List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nature Communications, 2018, 9, 2885.	12.8	669
2	Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy and Environmental Science, 2012, 5, 6763.	30.8	474
3	Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Transactions, 2009, , 6458.	3.3	241
4	Visible Light-Driven Electron Transfer and Hydrogen Generation Catalyzed by Bioinspired [2Fe2S] Complexes. Inorganic Chemistry, 2008, 47, 2805-2810.	4.0	203
5	Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source. Angewandte Chemie - International Edition, 2019, 58, 9155-9159.	13.8	188
6	Influence of Tertiary Phosphanes on the Coordination Configurations and Electrochemical Properties of Iron Hydrogenase Model Complexes: Crystal Structures of [(μ-S2C3H6)Fe2(CO)6-nLn] (L =) Tj E	ΓQq 2.0 Ο rş	gBT1 #@ verlock
7	A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogenâ€Generation Rate Constant in Aqueous Solution. Angewandte Chemie - International Edition, 2014, 53, 13803-13807.	13.8	166
8	Photochemical H2 production with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst. Chemical Communications, 2010, 46, 8806.	4.1	160
9	Photocatalytic Hydrogen Production from Water by Noble-Metal-Free Molecular Catalyst Systems Containing Rose Bengal and the Cobaloximes of BF _{<i>x</i>} -Bridged Oxime Ligands. Journal of Physical Chemistry C, 2010, 114, 15868-15874.	3.1	151
10	Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-Site Model: Photo-Induced Electron Transfer and Hydrogen Generation. Journal of Physical Chemistry B, 2008, 112, 8198-8202.	2.6	150
11	Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe ₂ S ₂] catalyst with high turnover numbers. Dalton Transactions, 2010, 39, 1204-1206.	3.3	143
12	Electroless plated Ni–B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 2016, 19, 98-107.	16.0	143
13	Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coordination Chemistry Reviews, 2015, 287, 1-14.	18.8	140
14	Simple Nickelâ€Based Catalyst Systems Combined With Graphitic Carbon Nitride for Stable Photocatalytic Hydrogen Production in Water. ChemSusChem, 2012, 5, 2133-2138.	6.8	126
15	A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential. Energy and Environmental Science, 2014, 7, 329-334.	30.8	121
16	Photochemical hydrogen production catalyzed by polypyridyl ruthenium–cobaloxime heterobinuclear complexes with different bridges. Journal of Organometallic Chemistry, 2009, 694, 2814-2819.	1.8	116
17	Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Dalton Transactions, 2011, 40, 12793.	3.3	116
18	Photocatalytic H2 production in aqueous solution with host-guest inclusions formed by insertion of an FeFe-hydrogenase mimic and an organic dye into cyclodextrins. Energy and Environmental Science, 2012, 5, 8220.	30.8	114

#	Article	IF	CITATIONS
19	Intermolecular Electron Transfer from Photogenerated Ru(bpy)3+to [2Fe2S] Model Complexes of the Iron-Only Hydrogenase Active Site. Inorganic Chemistry, 2007, 46, 3813-3815.	4.0	107
20	Catalytic Activation of H ₂ under Mild Conditions by an [FeFe]-Hydrogenase Model via an Active μ-Hydride Species. Journal of the American Chemical Society, 2013, 135, 13688-13691.	13.7	107
21	Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Dalton Transactions, 2013, 42, 12059.	3.3	104
22	Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes. Chemical Communications, 2013, 49, 9455.	4.1	91
23	Carbene–pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc). Dalton Transactions, 2007, , 1277-1283.	3.3	85
24	Preparation, Facile Deprotonation, and Rapid H/D Exchange of the μ-Hydride Diiron Model Complexes of the [FeFe]-Hydrogenase Containing a Pendant Amine in a Chelating Diphosphine Ligand. Inorganic Chemistry, 2009, 48, 11551-11558.	4.0	84
25	Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases. Chemistry - A European Journal, 2004, 10, 4474-4479.	3.3	83
26	Unraveling a Single-Step Simultaneous Two-Electron Transfer Process from Semiconductor to Molecular Catalyst in a CoPy/CdS Hybrid System for Photocatalytic H ₂ Evolution under Strong Alkaline Conditions. Journal of the American Chemical Society, 2016, 138, 10726-10729.	13.7	79
27	Hydrogen Production by Nobleâ€Metalâ€Free Molecular Catalysts and Related Nanomaterials. ChemSusChem, 2010, 3, 551-554.	6.8	75
28	An insight into the protonation property of a diiron azadithiolate complex pertinent to the active site of Fe-only hydrogenases. Chemical Communications, 2006, , 305-307.	4.1	73
29	A proton–hydride diiron complex with a base-containing diphosphine ligand relevant to the [FeFe]-hydrogenase active site. Chemical Communications, 2008, , 5800.	4.1	73
30	Promoting Effect of Electrostatic Interaction between a Cobalt Catalyst and a Xanthene Dye on Visible-Light-Driven Electron Transfer and Hydrogen Production. Journal of Physical Chemistry C, 2011, 115, 15089-15096.	3.1	73
31	CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H ₂ evolution from neutral water. Journal of Materials Chemistry A, 2015, 3, 18852-18859.	10.3	72
32	Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiO core-shell heterostructured nanoparticulate film. Nano Energy, 2017, 38, 175-184.	16.0	71
33	Electrocatalytic water oxidation by copper(<scp>ii</scp>) complexes containing a tetra- or pentadentate amine-pyridine ligand. Chemical Communications, 2017, 53, 4374-4377.	4.1	71
34	Visible-light-absorbing semiconductor/molecular catalyst hybrid photoelectrodes for H ₂ or O ₂ evolution: recent advances and challenges. Sustainable Energy and Fuels, 2017, 1, 1641-1663.	4.9	68
35	An approach to water-soluble hydrogenase active site models: Synthesis and electrochemistry of diiron dithiolate complexes with 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane ligand(s). Journal of Organometallic Chemistry, 2006, 691, 5045-5051.	1.8	66
36	Highly efficient molecular nickel catalysts for electrochemical hydrogen production from neutral water. Chemical Communications, 2014, 50, 14153-14156.	4.1	65

#	Article	IF	CITATIONS
37	Self-Supported Stainless Steel Nanocone Array Coated with a Layer of Ni–Fe Oxides/(Oxy)hydroxides as a Highly Active and Robust Electrode for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 8786-8796.	8.0	64
38	Structures, protonation, and electrochemical properties of diiron dithiolate complexes containing pyridyl-phosphine ligands. Dalton Transactions, 2009, , 1919.	3.3	61
39	Protonation, electrochemical properties and molecular structures of halogen-functionalized diiron azadithiolate complexes related to the active site of iron-only hydrogenases. Dalton Transactions, 2007, , 3812.	3.3	60
40	CO-Migration in the Ligand Substitution Process of the Chelating Diphosphite Diiron Complex (μ-pdt)[Fe(CO) ₃][Fe(CO){(EtO) ₂ PN(Me)P(OEt) ₂ }]. Inorganic Chemistry, 2008, 47, 6948-6955.	4.0	50
41	Spectroscopic and crystallographic evidence for the N-protonated FeIFeI azadithiolate complex related to the active site of Fe-only hydrogenases. Chemical Communications, 2005, , 3221.	4.1	49
42	Efficient dye-sensitized solar cells with [copper(6,6′-dimethyl-2,2′-bipyridine) ₂] ^{2+/1+} redox shuttle. RSC Advances, 2017 7, 4611-4615.	, 3.6	48
43	Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 7564-7570.	10.3	47
44	Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source. Angewandte Chemie, 2019, 131, 9253-9257.	2.0	47
45	Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems. Chemical Communications, 2015, 51, 7008-7011.	4.1	44
46	Photocatalytic Water Reduction and Study of the Formation of Fe ^I Fe ⁰ Species in Diiron Catalyst Sytems. ChemSusChem, 2012, 5, 913-919.	6.8	42
47	Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays. ACS Applied Materials & Interfaces, 2016, 8, 30143-30151.	8.0	40
48	Highly enantioselective sulfoxidation with vanadium catalysts of Schiff bases derived from bromo- and iodo-functionalized hydroxynaphthaldehydes. Journal of Catalysis, 2010, 273, 177-181.	6.2	39
49	Preparation and structures of enantiomeric dinuclear zirconium and hafnium complexes containing two homochiral N atoms, and their catalytic property for polymerization of rac-lactide. Dalton Transactions, 2010, 39, 4440.	3.3	39
50	Improvement of Electrochemical Water Oxidation by Fineâ€Tuning the Structure of Tetradentate N ₄ Ligands of Molecular Copper Catalysts. ChemSusChem, 2017, 10, 4581-4588.	6.8	38
51	Preparation, structures and electrochemical property of phosphine substituted diiron azadithiolates relevant to the active site of Fe-only hydrogenases. Journal of Inorganic Biochemistry, 2007, 101, 506-513.	3.5	37
52	Diiron dithiolate complexes containing intra-ligand NH⋯S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Dalton Transactions, 2008, , 2400.	3.3	37
53	A Cuâ€Based Nanoparticulate Film as Superâ€Active and Robust Catalyst Surpasses Pt for Electrochemical H ₂ Production from Neutral and Weak Acidic Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1502319.	19.5	36
54	Synthesis, structures and electrochemical properties of hydroxyl- and pyridyl-functionalized diiron azadithiolate complexes. Polyhedron, 2007, 26, 904-910.	2.2	34

#	Article	IF	CITATIONS
55	Phosphane and Phosphite Unsymmetrically Disubstituted Diiron Complexes Related to the Fe-Only Hydrogenase Active Site. European Journal of Inorganic Chemistry, 2007, 2007, 3718-3727.	2.0	32
56	The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton Transactions, 2015, 44, 9736-9739.	3.3	32
57	Competitive Hole Transfer from CdSe Quantum Dots to Thiol Ligands in CdSe-Cobaloxime Sensitized NiO Films Used as Photocathodes for H ₂ Evolution. ACS Energy Letters, 2017, 2, 2576-2580.	17.4	32
58	Multielectronâ€Transfer Templates via Consecutive Twoâ€Electron Transformations: Iron–Sulfur Complexes Relevant to Biological Enzymes. Chemistry - A European Journal, 2012, 18, 13968-13973.	3.3	31
59	Tetranuclear Iron Complexes Bearing Benzenetetrathiolate Bridges as Four-Electron Transformation Templates and Their Electrocatalytic Properties for Proton Reduction. Inorganic Chemistry, 2013, 52, 1798-1806.	4.0	31
60	Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator. ACS Applied Materials & Interfaces, 2018, 10, 30409-30416.	8.0	31
61	Asymmetric epoxidation of styrene and chromenes catalysed by chiral (salen)Mn(III) complexes with a pyrrolidine backbone. Journal of Catalysis, 2006, 237, 248-254.	6.2	30
62	An azadithiolate bridged Fe2S2 complex as active site model of FeFe-hydrogenase covalently linked to a Re(CO)3(bpy)(py) photosensitizer aiming for light-driven hydrogen production. Comptes Rendus Chimie, 2008, 11, 915-921.	0.5	30
63	Influence of the backbone of N ₅ -pentadentate ligands on the catalytic performance of Ni(<scp>ii</scp>) complexes for electrochemical water oxidation in neutral aqueous solutions. Chemical Communications, 2018, 54, 9019-9022.	4.1	28
64	Photocatalytic H ₂ production using a hybrid assembly of an [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin. Faraday Discussions, 2017, 198, 197-209.	3.2	27
65	An Unusual Cyclization in a Bis(cysteinyl-S) Diiron Complex Related to the Active Site of Fe-Only Hydrogenases. Angewandte Chemie - International Edition, 2004, 43, 3571-3574.	13.8	26
66	Enhanced Photocatalytic Hydrogen Production by Adsorption of an [FeFe]â€Hydrogenase Subunit Mimic on Selfâ€Assembled Membranes. European Journal of Inorganic Chemistry, 2016, 2016, 554-560.	2.0	26
67	Synthesis and characterization of carboxy-functionalized diiron model complexes of [FeFe]-hydrogenases: Decarboxylation of Ph2PCH2COOH promoted by a diiron azadithiolate complex. Journal of Organometallic Chemistry, 2009, 694, 2309-2314.	1.8	25
68	A Dinuclear Copper Complex Featuring a Flexible Linker as Water Oxidation Catalyst with an Activity Far Superior to Its Mononuclear Counterpart. Inorganic Chemistry, 2020, 59, 5424-5432.	4.0	25
69	Spin-Controlled Charge-Recombination Pathways across the Inorganic/Organic Interface. Journal of the American Chemical Society, 2020, 142, 4723-4731.	13.7	25
70	Influence of substituents in the salicylaldehydeâ€derived Schiff bases on vanadium atalyzed asymmetric oxidation of sulfides. Applied Organometallic Chemistry, 2008, 22, 253-257.	3.5	24
71	Asymmetric oxidation of sulfides catalyzed by chiral (salen)Mn(III) complexes with a pyrrolidine backbone. Applied Organometallic Chemistry, 2006, 20, 830-834.	3.5	23
72	Asymmetric oxidation of sulfides with hydrogen peroxide catalyzed by a vanadium complex of a new chiral NOO-ligand. Catalysis Communications, 2009, 11, 294-297.	3.3	23

#	Article	IF	CITATIONS
73	Asymmetric Oxidation of Sulfides Catalyzed by Vanadium(IV) Complexes of Dibromo- and Diiodo-Functionalized Chiral Schiff Bases. Chinese Journal of Catalysis, 2006, 27, 743-748.	14.0	22
74	Asymmetric oxidation of sulfides with H2O2 catalyzed by titanium complexes of Schiff bases bearing a dicumenyl salicylidenyl unit. Applied Organometallic Chemistry, 2011, 25, 325-330.	3.5	22
75	Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 19132-19140.	8.0	22
76	Chemical Versatility of [FeFe]-Hydrogenase Models: Distinctive Activity of [μ-C6H4-1,2-(κ2-S)2][Fe2(CO)6] for Electrocatalytic CO2Reduction. ACS Catalysis, 2019, 9, 768-774.	11.2	21
77	Amorphous Ni(Fe)O H -coated nanocone arrays self-supported on stainless steel mesh as a promising oxygen-evolving anode for large scale water splitting. Journal of Power Sources, 2018, 389, 160-168.	7.8	20
78	Asymmetric epoxidation of styrene and chromenes catalysed by dimeric chiral (pyrrolidine) Tj ETQq0 0 0 rgBT /Ov	verlock 10 4.3	Tf ₁₉ 0 542 Td

79	Effect of the S-to-S bridge on the redox properties and H ₂ activation performance of diiron complexes related to the [FeFe]-hydrogenase active site. Dalton Transactions, 2016, 45, 17687-17696.	3.3	19
80	Charge transfer dynamics and catalytic performance of a covalently linked hybrid assembly comprising a functionalized cobalt tetraazamacrocyclic catalyst and CuInS ₂ /ZnS quantum dots for photochemical hydrogen production. Journal of Materials Chemistry A, 2019, 7, 27432-27440.	10.3	19
81	Electrochemical Water Oxidation Catalyzed by N ₄ â€Coordinate Copper Complexes with Different Backbones: Insight into the Structureâ€Activity Relationship of Copper Catalysts. ChemCatChem, 2020, 12, 1302-1306.	3.7	19
82	Selective Electro-oxidation of Alcohols to the Corresponding Aldehydes in Aqueous Solution via Cu(III) Intermediates from CuO Nanorods. ACS Sustainable Chemistry and Engineering, 2021, 9, 11855-11861.	6.7	19
83	Supramolecular self-assembly of a [2Fe2S] complex with a hydrophilic phosphine ligand. CrystEngComm, 2008, 10, 267-269.	2.6	18
84	Nickel Complex with Internal Bases as Efficient Molecular Catalyst for Photochemical H ₂ Production. ChemSusChem, 2014, 7, 2889-2897.	6.8	18
85	Preparation, characterization and electrochemistry of an iron-only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer. Journal of Coordination Chemistry, 2008, 61, 1856-1861.	2.2	17
86	Effect of Bridgehead Steric Bulk on the Intramolecular C–H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P ₂ N ₂ Pendant Amine Ligand. Inorganic Chemistry, 2016, 55, 411-418.	4.0	17
87	Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol Catalyzed by Nanoporous Nickel. Catalysis Letters, 2020, 150, 837-848.	2.6	17
88	[FeFe]-Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges. Journal of Inorganic Biochemistry, 2008, 102, 952-959.	3.5	16
89	Photochemical hydrogen production with molecular devices comprising a zinc porphyrin and a cobaloxime catalyst. Science China Chemistry, 2012, 55, 1274-1282.	8.2	16
90	Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary Î ² -Hydride Elimination and Hydrogen Formation Steps. Inorganic Chemistry, 2021, 60, 3410-3417	4.0	16

#	Article	IF	CITATIONS
91	The influence of a S-to-S bridge in diiron dithiolate models on the oxidation reaction: a mimic of the Hairox state of [FeFe]-hydrogenases. Chemical Communications, 2014, 50, 9255-9258.	4.1	15
92	Synthesis, protonation and electrochemical properties of trinuclear NiFe2 complexes Fe2(CO)6(l¼3-S)2[Ni(Ph2PCH2)2NR] (R=n-Bu, Ph) with an internal pendant nitrogen base as a proton relay. Inorganica Chimica Acta, 2009, 362, 372-376.	2.4	14
93	Influence of Anchoring Groups on the Charge Transfer and Performance of p-Si/TiO ₂ /Cobaloxime Hybrid Photocathodes for Photoelectrochemical H ₂ Production. ACS Applied Materials & Interfaces, 2019, 11, 34010-34019.	8.0	13
94	Fine-tuning the coordination atoms of copper redox mediators: an effective strategy for boosting the photovoltage of dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 12808-12814.	10.3	12
95	Boosting Electrocatalytic Water Oxidation by Creating Defects and Latticeâ€Oxygen Active Sites on Niâ€Fe Nanosheets. ChemSusChem, 2020, 13, 5067-5072.	6.8	12
96	Assignment of the absolute configuration of dinuclear zirconium complexes containing two homochiral N atoms using TDDFT calculations of ECD. Chemical Physics Letters, 2011, 502, 266-270.	2.6	11
97	Synthesis and property of a chiral salen Mn(III) complex covalently linked to an Ru(II) tris(bipyridyl) photosensitizer. Inorganic Chemistry Communication, 2005, 8, 606-609.	3.9	10
98	Influence of the built-in pyridinium salt on asymmetric epoxidation of substituted chromenes catalysed by chiral (pyrrolidine salen)Mn(III) complexes. Journal of Molecular Catalysis A, 2007, 270, 278-283.	4.8	10
99	Synthesis of Tri- and Disalicylaldehydes and Their Chiral Schiff Base Compounds. Synthetic Communications, 2010, 40, 1074-1081.	2.1	10
100	Boosting the performance of a silicon photocathode for photoelectrochemical hydrogen production by immobilization of a cobalt tetraazamacrocyclic catalyst. Journal of Materials Chemistry A, 2021, 9, 234-238.	10.3	10
101	Protophilicity, electrochemical property, and desulfurization of diiron dithiolate complexes containing a functionalized C2 bridge with two vicinal basic sites. Polyhedron, 2009, 28, 1138-1144.	2.2	8
102	Selective photocatalytic reduction of CO2 to CO mediated by a [FeFe]-hydrogenase model with a 1,2-phenylene S-to-S bridge. Chinese Journal of Catalysis, 2021, 42, 310-319.	14.0	8
103	Interface-engineered silicon photocathodes with a NiCoP catalyst-modified TiO2 nanorod array outlayer for photoelectrochemical hydrogen production in alkaline solution. Journal of Power Sources, 2021, 484, 229272.	7.8	8
104	Synthesis of 3â€Arylâ€5â€tâ€butylsalicylaldehydes and their Chiral Schiff Base Compounds. Synthetic Communications, 2007, 37, 3815-3826.	2.1	7
105	Synthesis and structure of a µâ€oxo diiron(III) complex with an <i>N</i> â€pyridylmethylâ€ <i>N</i> , <i>N</i> â€bis(4â€methylbenzimidazolâ€2â€yl)amine ligand and its catalytic property for hydrocarbon oxidation. Applied Organometallic Chemistry, 2008, 22, 573-576.	3.5	7
106	Polymerization of rac-lactide catalyzed by group 4 metal complexes containing chiral N atoms. Polymer Bulletin, 2012, 68, 1789-1799.	3.3	6
107	Low-cost solution-processed digenite Cu ₉ S ₅ counter electrode for dye-sensitized solar cells. RSC Advances, 2017, 7, 38452-38457.	3.6	6
108	Effect of Deprotonation of a Benzimidazolyl Ligand on the Redox Potential and the Structures of Mononuclear Ruthenium(II) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4128-4131.	2.0	5

#	Article	IF	CITATIONS
109	Effects of Additives on Water Solubilization Capacity and Intermicellar Interaction in Heptane/Hexanol/Tritonx-100/Water Microemulsion. Journal of Dispersion Science and Technology, 2011, 32, 415-423.	2.4	4
110	A silicon-based hybrid photocathode modified with an N ₅ -chelated nickel catalyst in a noble-metal-free biomimetic photoelectrochemical cell for solar-driven unbiased overall water splitting. Journal of Materials Chemistry A, 2021, 9, 12140-12151.	10.3	4
111	Synthesis of New Chiral Schiff Bases Containing Bromo- and Iodo-Functionalized Hydroxynaphthalene Frameworks. Synthetic Communications, 2011, 41, 1381-1393.	2.1	3
112	Conjugated Linkers Improve the Photoelectrocatalytic H 2 â€Evolution Activity of Cobaloximeâ€Modified Silicon Photocathodes by Largely Suppressing Charge Recombination. Advanced Materials Interfaces, 2021, 8, 2100182.	3.7	3
113	Synthesis of chiral salen Mn(III) complexes covalently linked to Re(I)-based photosensitizers. Journal of Coordination Chemistry, 2006, 59, 475-484.	2.2	1
114	An Unusual Cyclization in a Bis(cysteinyl-S) Diiron Complex Related to the Active Site of Fe-Only Hydrogenases. Angewandte Chemie - International Edition, 2005, 44, 506-506.	13.8	0