Tania Vitalis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043926/publications.pdf

Version: 2024-02-01

52 papers 3,657 citations

33 h-index 214800 47 g-index

52 all docs 52 docs citations 52 times ranked 4209 citing authors

#	Article	IF	CITATIONS
1	Molecular and electrophysiological features of GABAergic neurons in the dentate gyrus reveal limited homology with cortical interneurons. PLoS ONE, 2022, 17, e0270981.	2.5	1
2	Poly(ADP-Ribose) Polymerase Inhibitor PJ34 Reduces Brain Damage after Stroke in the Neonatal Mouse Brain. Current Issues in Molecular Biology, 2021, 43, 301-312.	2.4	5
3	RORα Coordinates Thalamic and Cortical Maturation to Instruct Barrel Cortex Development. Cerebral Cortex, 2018, 28, 3994-4007.	2.9	15
4	Retinoid receptor-related orphan receptor alpha: a key gene setting brain circuits. Neural Regeneration Research, 2018, 13, 791.	3.0	5
5	Sculpting Cerebral Cortex with Serotonin in Rodent and Primate. , 2017, , .		3
6	Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Development (Cambridge), 2016, 143, 1753-65.	2.5	43
7	Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. European Neuropsychopharmacology, 2016, 26, 55-64.	0.7	66
8	Activation of type-1 cannabinoid receptor shifts the balance between excitation and inhibition towards excitation in layer II/III pyramidal neurons of the rat prelimbic cortex. Pflugers Archiv European Journal of Physiology, 2015, 467, 1551-1564.	2.8	23
9	Holographic laser Doppler imaging of microvascular blood flow. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 2723.	1.5	19
10	Serotonin receptor 3A controls interneuron migration into the neocortex. Nature Communications, 2014, 5, 5524.	12.8	74
11	Diversity of GABAergic Interneurons in Layer VIa and VIb of Mouse Barrel Cortex. Cerebral Cortex, 2013, 23, 423-441.	2.9	51
12	Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons. Developmental Neurobiology, 2013, 73, 647-672.	3.0	20
13	Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Frontiers in Cellular Neuroscience, 2013, 7, 93.	3.7	65
14	New Pool of Cortical Interneuron Precursors in the Early Postnatal Dorsal White Matter. Cerebral Cortex, 2012, 22, 86-98.	2.9	42
15	Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse. Frontiers in Neural Circuits, 2012, 6, 36.	2.8	72
16	Activation of cortical 5-HT3 receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Frontiers in Neural Circuits, 2012, 6, 50.	2.8	38
17	Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Frontiers in Neural Circuits, 2012, 6, 82.	2.8	88
18	New insights into cortical interneurons development and classification: Contribution of developmental studies. Developmental Neurobiology, 2011, 71, 34-44.	3.0	31

#	Article	IF	CITATIONS
19	Degenerative abnormalities in transgenic neocortical neuropeptide Y interneurons expressing tauâ€green fluorescent protein. Journal of Neuroscience Research, 2010, 88, 487-499.	2.9	6
20	Serotonin 3A Receptor Subtype as an Early and Protracted Marker of Cortical Interneuron Subpopulations. Cerebral Cortex, 2010, 20, 2333-2347.	2.9	128
21	Chapter 3. From Unicellular to Multicellular Organismsâ^¶ Tells from Evolution and from Development. RSC Nanoscience and Nanotechnology, 2010, , 26-35.	0.2	0
22	Chapter 4. Understanding Cellular Differentiation. RSC Nanoscience and Nanotechnology, 2010, , 36-44.	0.2	0
23	The Somatostatin 2A Receptor Is Enriched in Migrating Neurons during Rat and Human Brain Development and Stimulates Migration and Axonal Outgrowth. PLoS ONE, 2009, 4, e5509.	2.5	28
24	The N-terminal region of reelin regulates postnatal dendritic maturation of cortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7227-7232.	7.1	103
25	Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development. BMC Genomics, 2009, 10, 138.	2.8	50
26	Proliferation deficits and gene expression dysregulation in Down's syndrome (Ts1Cje) neural progenitor cells cultured from neurospheres. Journal of Neuroscience Research, 2009, 87, 3143-3152.	2.9	37
27	The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth <i>in vitro</i> . European Journal of Neuroscience, 2008, 28, 1705-1718.	2.6	81
28	High-speed wave-mixing laser Doppler imaging in vivo. Optics Letters, 2008, 33, 842.	3.3	14
29	Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab on A Chip, 2008, 8, 443.	6.0	92
30	Conserved pattern of tangential neuronal migration during forebrain development. Development (Cambridge), 2007, 134, 2815-2827.	2.5	84
31	Developmental Cell Death Is Enhanced in the Cerebral Cortex of Mice Lacking the Brain Vesicular Monoamine Transporter. Journal of Neuroscience, 2007, 27, 1315-1324.	3.6	43
32	Cortical blood flow assessment with frequency-domain laser Doppler microscopy. Journal of Biomedical Optics, 2007, 12, 024019.	2.6	20
33	Embryonic depletion of serotonin affects cortical development. European Journal of Neuroscience, 2007, 26, 331-344.	2.6	138
34	Frequency-domain wide-field laser Doppler in vivo imaging. Optics Letters, 2006, 31, 2762.	3.3	41
35	Expression of Cux-1 and Cux-2 in the developing somatosensory cortex of normal and barrel-defective mice. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 158-165.	2.0	47
36	Synaptic Ras GTPase Activating Protein Regulates Pattern Formation in the Trigeminal System of Mice. Journal of Neuroscience, 2006, 26, 1355-1365.	3.6	44

#	Article	IF	CITATIONS
37	Differential expression of two NMDA receptor interacting proteins, PSD-95 and SynGAP during mouse development. European Journal of Neuroscience, 2005, 21, 351-362.	2.6	40
38	Development of the dopaminergic neurons in the rodent brainstem. Experimental Neurology, 2005, 191, S104-S112.	4.1	42
39	Developmental expression pattern of monoamine oxidases in sensory organs and neural crest derivatives. Journal of Comparative Neurology, 2003, 464, 392-403.	1.6	34
40	The Role of Serotonin in Early Cortical Development. Developmental Neuroscience, 2003, 25, 245-256.	2.0	142
41	Effects of genetic depletion of monoamines on somatosensory cortical development. Neuroscience, 2002, 115, 753-764.	2.3	48
42	Interactions between TrkB Signaling and Serotonin Excess in the Developing Murine Somatosensory Cortex: A Role in Tangential and Radial Organization of Thalamocortical Axons. Journal of Neuroscience, 2002, 22, 4987-5000.	3.6	45
43	Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. Journal of Comparative Neurology, 2002, 442, 331-347.	1.6	84
44	Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development (Cambridge), 2002, 129, 3147-3160.	2.5	300
45	Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development (Cambridge), 2002, 129, 3147-60.	2.5	138
46	The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ. Mechanisms of Development, 2001, 109, 215-224.	1.7	94
47	PLC- \hat{l}^2 1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neuroscience, 2001, 4, 282-288.	14.8	210
48	Defects of Tyrosine Hydroxylase-Immunoreactive Neurons in the Brains of Mice Lacking the Transcription Factor Pax6. Journal of Neuroscience, 2000, 20, 6501-6516.	3.6	84
49	Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: Determination of a sensitive developmental period., 1998, 393, 169-184.		128
50	Plasma Membrane Transporters of Serotonin, Dopamine, and Norepinephrine Mediate Serotonin Accumulation in Atypical Locations in the Developing Brain of Monoamine Oxidase A Knock-Outs. Journal of Neuroscience, 1998, 18, 6914-6927.	3.6	158
51	Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A–Deficient Mice: Role of a Serotonin Excess during the Critical Period. Neuron, 1996, 16, 297-307.	8.1	493
52	Roles of the Serotoninergic System in Coping with Traumatic Stress. , 0, , .		0