Maarten van Smeden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5042875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparison of full model specification and backward elimination of potential confounders when estimating marginal and conditional causal effects on binary outcomes from observational data. Biometrical Journal, 2024, 66, .	0.6	1
2	Prognostic factors for adverse outcomes in patients with COVID-19: a field-wide systematic review and meta-analysis. European Respiratory Journal, 2022, 59, 2002964.	3.1	42
3	Projecting the impact of triple CFTR modulator therapy on intravenous antibiotic requirements in cystic fibrosis using patient registry data combined with treatment effects from randomised trials. Thorax, 2022, 77, 873-881.	2.7	11
4	Causal analyses of existing databases: the importance of understanding what can be achieved with your data before analysis (commentary on Hernán). Journal of Clinical Epidemiology, 2022, 142, 261-263.	2.4	2
5	QCOVID in Scotland: time to recalibrate our expectations?. Thorax, 2022, 77, 429-430.	2.7	0
6	Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. Npj Digital Medicine, 2022, 5, 2.	5.7	147
7	The year in cardiovascular medicine 2021: digital health and innovation. European Heart Journal, 2022, 43, 271-279.	1.0	26
8	Performance of binary prediction models in high-correlation low-dimensional settings: a comparison of methods. Diagnostic and Prognostic Research, 2022, 6, 1.	0.8	11
9	Are Off-Field Activities an Underestimated Risk for Hamstring Injuries in Dutch Male Amateur Soccer Players? An Exploratory Analysis of a Prospective Cohort Study. Journal of Science in Sport and Exercise, 2022, 4, 28-36.	0.4	0
10	Evaluation of the Value of Waist Circumference and Metabolomics in the Estimation of Visceral Adipose Tissue. American Journal of Epidemiology, 2022, , .	1.6	7
11	Ruling out pulmonary embolism across different healthcare settings: A systematic review and individual patient data meta-analysis. PLoS Medicine, 2022, 19, e1003905.	3.9	19
12	Artificial Intelligence and Statistics: Just the Old Wine in New Wineskins?. Frontiers in Digital Health, 2022, 4, 833912.	1.5	11
13	Sex- and age specific association of new-onset atrial fibrillation with in-hospital mortality in hospitalised COVID-19 patients. IJC Heart and Vasculature, 2022, 39, 100970.	0.6	8
14	Prediction models for living organ transplantation are poorly developed, reported, and validated: a systematic review. Journal of Clinical Epidemiology, 2022, 145, 126-135.	2.4	6
15	Minimum sample size calculations for external validation of a clinical prediction model with a timeâ€ŧoâ€event outcome. Statistics in Medicine, 2022, 41, 1280-1295.	0.8	34
16	Safety and Efficiency of Diagnostic Strategies for Ruling Out Pulmonary Embolism in Clinically Relevant Patient Subgroups. Annals of Internal Medicine, 2022, 175, 244-255.	2.0	27
17	Age is the main determinant of COVID-19 related in-hospital mortality with minimal impact of pre-existing comorbidities, a retrospective cohort study. BMC Geriatrics, 2022, 22, 184.	1.1	35
18	External validation of the MSKCC nomogram to estimate five-year overall survival after surgery for stage lâ \in "III colon cancer in a Dutch population. Acta OncolÂ ³ gica, 2022, 61, 560-565.	0.8	0

MAARTEN VAN SMEDEN

#	Article	IF	CITATIONS
19	Measures of (injury and illness) occurrence: a primer on epidemiological concepts and terminology for authors. Science and Medicine in Football, 2022, 6, 137-140.	1.0	4
20	Lessons learnt when accounting for competing events in the external validation of time-to-event prognostic models. International Journal of Epidemiology, 2022, 51, 615-625.	0.9	15
21	Risk prediction models for discrete ordinal outcomes: Calibration and the impact of the proportional odds assumption. Statistics in Medicine, 2022, 41, 1334-1360.	0.8	9
22	Cardiovascular vulnerability predicts hospitalisation in primary care clinically suspected and confirmed COVID-19 patients: A model development and validation study. PLoS ONE, 2022, 17, e0266750.	1.1	3
23	Optimising telephone triage of patients calling for acute shortness of breath during out-of-hours primary care: protocol of a multiple methods study (Opticall). BMJ Open, 2022, 12, e059549.	0.8	Ο
24	Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease. European Heart Journal, 2022, 43, 2921-2930.	1.0	50
25	The harm of class imbalance corrections for risk prediction models: illustration and simulation using logistic regression. Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 1525-1534.	2.2	74
26	Developing, validating, updating and judging the impact of prognostic models for respiratory diseases. European Respiratory Journal, 2022, 60, 2200250.	3.1	14
27	Flaws in the Development and Validation of a Coronavirus Disease 2019 Prediction Model. Clinical Infectious Diseases, 2021, 73, 557-558.	2.9	Ο
28	Approaches to addressing missing values, measurement error, and confounding in epidemiologic studies. Journal of Clinical Epidemiology, 2021, 131, 89-100.	2.4	17
29	A weighting method for simultaneous adjustment for confounding and joint exposure-outcome misclassifications. Statistical Methods in Medical Research, 2021, 30, 473-487.	0.7	Ο
30	Comment on Williamson et al. (OpenSAFELY): The Table 2 Fallacy in a Study of COVID-19 Mortality Risk Factors. Epidemiology, 2021, 32, e1-e2.	1.2	17
31	Adaptive sample size determination for the development of clinical prediction models. Diagnostic and Prognostic Research, 2021, 5, 6.	0.8	8
32	Clinical prediction models: diagnosis versus prognosis. Journal of Clinical Epidemiology, 2021, 132, 142-145.	2.4	60
33	Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respiratory Medicine,the, 2021, 9, 349-359.	5.2	161
34	Sampling Strategies for Internal Validation Samples for Exposure Measurement–Error Correction: A Study of Visceral Adipose Tissue Measures Replaced by Waist Circumference Measures. American Journal of Epidemiology, 2021, 190, 1935-1947.	1.6	3
35	Methodology over metrics: current scientific standards are a disservice to patients and society. Journal of Clinical Epidemiology, 2021, 138, 219-226.	2.4	54
36	Minimum sample size for external validation of a clinical prediction model with a binary outcome. Statistics in Medicine, 2021, 40, 4230-4251.	0.8	122

#	Article	IF	CITATIONS
37	Newâ€user and prevalentâ€user designs and the definition of study time origin in pharmacoepidemiology: A review of reporting practices. Pharmacoepidemiology and Drug Safety, 2021, 30, 960-974.	0.9	8
38	Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 2021, 11, e048008.	0.8	313
39	The prognostic value of the hamstring outcome score to predict the risk of hamstring injuries. Journal of Science and Medicine in Sport, 2021, 24, 641-646.	0.6	1
40	Identifying adults with acute rhinosinusitis in primary care that benefit most from antibiotics: protocol of an individual patient data meta-analysis using multivariable risk prediction modelling. BMJ Open, 2021, 11, e047186.	0.8	1
41	Management of superficial venous thrombosis based on individual risk profiles: protocol for the development and validation of three prognostic prediction models in large primary care cohorts. Diagnostic and Prognostic Research, 2021, 5, 15.	0.8	3
42	Prediction models: stepwise development and simultaneous validation is a step back. Journal of Clinical Epidemiology, 2021, , .	2.4	3
43	Mecor: An R package for measurement error correction in linear regression models with a continuous outcome. Computer Methods and Programs in Biomedicine, 2021, 208, 106238.	2.6	8
44	Why methods matter in a meta-analysis: a reappraisal showed inconclusive injury preventive effect of Nordic hamstring exercise. Journal of Clinical Epidemiology, 2021, 140, 111-124.	2.4	26
45	Why clinical context and relevant protocols matter: author's reply. Journal of Clinical Epidemiology, 2021, , .	2.4	Ο
46	Risk, Clinical Course, and Outcome of Ischemic Stroke in Patients Hospitalized With COVID-19: A Multicenter Cohort Study. Stroke, 2021, 52, 3978-3986.	1.0	18
47	Patient factors associated with referral to inpatient rehabilitation following knee or hip arthroplasty in a public sector cohort: A prognostic factor study. Journal of Evaluation in Clinical Practice, 2021, 27, 809-816.	0.9	1
48	159â€HaOS or CHaOS? The prognostic value of the hamstring outcome score (HaOS) to predict the risk of hamstring injury. , 2021, , .		0
49	Optimizing design of research to evaluate antibiotic stewardship interventions: consensus recommendations of a multinational working group. Clinical Microbiology and Infection, 2020, 26, 41-50.	2.8	49
50	Changing predictor measurement procedures affected the performance of prediction models in clinical examples. Journal of Clinical Epidemiology, 2020, 119, 7-18.	2.4	31
51	Reflection on modern methods: five myths about measurement error in epidemiological research. International Journal of Epidemiology, 2020, 49, 338-347.	0.9	97
52	Quantitative Bias Analysis for a Misclassified Confounder. Epidemiology, 2020, 31, 796-805.	1.2	2
53	Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: an observational cohort study. European Respiratory Journal, 2020, 56, 2003498.	3.1	145
54	Cardiac complications in patients hospitalised with COVID-19. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 817-823.	0.4	108

MAARTEN VAN SMEDEN

#	Article	IF	CITATIONS
55	Prediction Models for Physical, Cognitive, and Mental Health Impairments After Critical Illness: A Systematic Review and Critical Appraisal. Critical Care Medicine, 2020, 48, 1871-1880.	0.4	42
56	A Workflow for Missing Values Imputation of Untargeted Metabolomics Data. Metabolites, 2020, 10, 486.	1.3	20
57	COVID-19 prediction models should adhere to methodological and reporting standards. European Respiratory Journal, 2020, 56, 2002643.	3.1	16
58	Time to reality check the promises of machine learning-powered precision medicine. The Lancet Digital Health, 2020, 2, e677-e680.	5.9	126
59	Regression shrinkage methods for clinical prediction models do not guarantee improved performance: Simulation study. Statistical Methods in Medical Research, 2020, 29, 3166-3178.	0.7	55
60	A cautionary note on the use of the missing indicator method for handling missing data in prediction research. Journal of Clinical Epidemiology, 2020, 125, 188-190.	2.4	20
61	Calculating the sample size required for developing a clinical prediction model. BMJ, The, 2020, 368, m441.	3.0	804
62	Title, abstract, and keyword searching resulted in poor recovery of articles in systematic reviews of epidemiologic practice. Journal of Clinical Epidemiology, 2020, 121, 55-61.	2.4	32
63	Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, The, 2020, 369, m1328.	3.0	2,134
64	The Effects of Lower-Extremity Plyometric Training on Soccer-Specific Outcomes in Adult Male Soccer Players: A Systematic Review and Meta-Analysis. International Journal of Sports Physiology and Performance, 2020, 15, 3-17.	1.1	22
65	Does a bounding exercise program prevent hamstring injuries in adult male soccer players? – A clusterâ€RCT. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 515-523.	1.3	28
66	Sample size for binary logistic prediction models: Beyond events per variable criteria. Statistical Methods in Medical Research, 2019, 28, 2455-2474.	0.7	296
67	Measurement error in continuous endpoints in randomised trials: Problems and solutions. Statistics in Medicine, 2019, 38, 5182-5196.	0.8	13
68	Three myths about risk thresholds for prediction models. BMC Medicine, 2019, 17, 192.	2.3	101
69	The quality of studies evaluating antimicrobial stewardship interventions: a systematic review. Clinical Microbiology and Infection, 2019, 25, 555-561.	2.8	51
70	Impact of predictor measurement heterogeneity across settings on the performance of prediction models: A measurement error perspective. Statistics in Medicine, 2019, 38, 3444-3459.	0.8	55
71	Predicting 1â€Year Mortality in Older Hospitalized Patients: External Validation of the HOMR Model. Journal of the American Geriatrics Society, 2019, 67, 1478-1483.	1.3	7
72	Forcing dichotomous disease classification from reference standards leads to bias in diagnostic accuracy estimates: A simulation study. Journal of Clinical Epidemiology, 2019, 111, 1-10.	2.4	9

MAARTEN VAN SMEDEN

#	Article	IF	CITATIONS
73	Calibration: the Achilles heel of predictive analytics. BMC Medicine, 2019, 17, 230.	2.3	745
74	Comparability of treatment arms does not preventÂcorrelated trial results. Journal of Clinical Epidemiology, 2019, 106, 144-145.	2.4	0
75	Sample size considerations and predictive performance of multinomial logistic prediction models. Statistics in Medicine, 2019, 38, 1601-1619.	0.8	70
76	How variation in predictor measurement affects the discriminative ability and transportability of a prediction model. Journal of Clinical Epidemiology, 2019, 105, 136-141.	2.4	26
77	Machine Learning Compared With Pathologist Assessment. JAMA - Journal of the American Medical Association, 2018, 319, 1725.	3.8	7
78	Concerns about composite reference standards in diagnostic research. BMJ: British Medical Journal, 2018, 360, j5779.	2.4	26
79	Investigation of the "m―in the cmRCT (cohort multiple randomized controlled trial) design revealed dependence between trial results. Journal of Clinical Epidemiology, 2018, 101, 119-123.	2.4	3
80	Measurement error is often neglected in medical literature: a systematic review. Journal of Clinical Epidemiology, 2018, 98, 89-97.	2.4	69
81	Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation. BMC Medical Research Methodology, 2018, 18, 174.	1.4	2
82	Protect pregnant women by including them in clinical research. BMJ: British Medical Journal, 2018, 362, k4013.	2.4	5
83	Propensity Score Estimation Using Classification and Regression Trees in the Presence of Missing Covariate Data. Epidemiologic Methods, 2018, 7, .	0.8	6
84	Novel diabetes subgroups. Lancet Diabetes and Endocrinology,the, 2018, 6, 439-440.	5.5	12
85	Towards an appropriate framework to facilitate responsible inclusion of pregnant women in drug development programs. Trials, 2018, 19, 123.	0.7	9
86	The Preventive Effect Of A Bounding Exercise Programme On Hamstring Injuries In Amateur Male Soccer. Medicine and Science in Sports and Exercise, 2018, 50, 622-623.	0.2	0
87	Random measurement error: Why worry? An example of cardiovascular risk factors. PLoS ONE, 2018, 13, e0192298.	1.1	41
88	Challenges in measuring interprofessional–interorganisational collaboration with a questionnaire. BJCP Open, 2018, 2, bjgpopen18X101385.	0.9	6
89	Series: Pragmatic trials and real world evidence: Paper 6. Outcome measures in the real world. Journal of Clinical Epidemiology, 2017, 90, 99-107.	2.4	34
90	Response Adjusted for Days of Antibiotic Risk (RADAR): evaluation of a novel method to compare strategies to optimize antibiotic use. Clinical Microbiology and Infection, 2017, 23, 980-985.	2.8	8

#	Article	IF	CITATIONS
91	Validation study of the SCREENIVF: an instrument to screen women or men on risk for emotional maladjustment before the start of a fertility treatment. Fertility and Sterility, 2017, 107, 1370-1379.e5.	0.5	17
92	Efficient Sampling in Unmatched Case–Control Studies When the Total Number of Cases and Controls Is Fixed. Epidemiology, 2017, 28, 834-837.	1.2	7
93	Event rate net reclassification index and the integrated discrimination improvement for studying incremental value of risk markers. Statistics in Medicine, 2017, 36, 4495-4497.	0.8	10
94	A generic nomogram for multinomial prediction models: theory and guidance for construction. Diagnostic and Prognostic Research, 2017, 1, 8.	0.8	2
95	Bias due to composite reference standards in diagnostic accuracy studies. Statistics in Medicine, 2016, 35, 1454-1470.	0.8	42
96	No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Medical Research Methodology, 2016, 16, 163.	1.4	281
97	Response to the commentary on "A nomogram was developed to enhance the use of multinomial logistic regression modelling in diagnostic research― Journal of Clinical Epidemiology, 2016, 78, 7-9.	2.4	1
98	Diagnostic Test Accuracy in Childhood Pulmonary Tuberculosis: A Bayesian Latent Class Analysis. American Journal of Epidemiology, 2016, 184, 690-700.	1.6	52
99	Problems in detecting misfit of latent class models in diagnostic research without a gold standard were shown. Journal of Clinical Epidemiology, 2016, 74, 158-166.	2.4	3
100	Latent Class Models in Diagnostic Studies When There is No Reference Standard–A Systematic Review. American Journal of Epidemiology, 2014, 179, 423-431.	1.6	168
101	Testing for Two-Way Interactions in the Multigroup Common Factor Model. Structural Equation Modeling, 2013, 20, 98-107.	2.4	1
102	Value of composite reference standards in diagnostic research. BMJ, The, 2013, 347, f5605-f5605.	3.0	78
103	Evaluating Diagnostic Accuracy in the Face of Multiple Reference Standards. Annals of Internal Medicine, 2013, 159, 195.	2.0	32
104	Validation of prediction models in the presence of competing risks: a guide through modern methods. BMJ, The, 0, , e069249.	3.0	23
105	Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis. BMJ, The, 0, , e069881.	3.0	24