Sathish K R Padi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5041567/publications.pdf

Version: 2024-02-01

22 papers

663 citations 11 h-index 1199594 12 g-index

23 all docs 23 docs citations

23 times ranked 1278 citing authors

#	Article	IF	CITATIONS
1	Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death and Disease, 2010, 1, e105-e105.	6.3	185
2	MicroRNA-627 Mediates the Epigenetic Mechanisms of Vitamin D to Suppress Proliferation of Human Colorectal Cancer Cells and Growth ofÂXenograft Tumors in Mice. Gastroenterology, 2013, 145, 437-446.	1.3	115
3	MMP-9 Responsive PEG Cleavable Nanovesicles for Efficient Delivery of Chemotherapeutics to Pancreatic Cancer. Molecular Pharmaceutics, 2014, 11, 2390-2399.	4.6	91
4	Polycomb protein EZH2 suppresses apoptosis by silencing the proapoptotic miR-31. Cell Death and Disease, 2014, 5, e1486-e1486.	6.3	72
5	The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 7349.	12.8	51
6	Mechanisms Behind Resistance to PI3K Inhibitor Treatment Induced by the PIM Kinase. Molecular Cancer Therapeutics, 2018, 17, 2710-2721.	4.1	38
7	Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. Oncotarget, 2017, 8, 30199-30216.	1.8	32
8	Insulin receptor substrate 1 is a substrate of the Pim protein kinases. Oncotarget, 2016, 7, 20152-20165.	1.8	22
9	PIM protein kinases regulate the level of the long noncoding RNA H19 to control stem cell gene transcription and modulate tumor growth. Molecular Oncology, 2020, 14, 974-990.	4.6	18
10	EDC3 phosphorylation regulates growth and invasion through controlling Pâ€body formation and dynamics. EMBO Reports, 2021, 22, e50835.	4.5	17
11	Phosphorylation of DEPDC5, a component of the GATOR1 complex, releases inhibition of mTORC1 and promotes tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20505-20510.	7.1	16
12	PIM Kinase Inhibitors Block the Growth of Primary T-cell Acute Lymphoblastic Leukemia: Resistance Pathways Identified by Network Modeling Analysis. Molecular Cancer Therapeutics, 2020, 19, 1809-1821.	4.1	6
13	"Rootâ€ing for successful T-ALL treatment. Blood, 2021, 137, 2422-2423.	1.4	O
14	Abstract 2296: Regulation of P-body dynamics and formation in tumors through EDC3 phosphorylation by PIM and AKT. , 2021, , .		0
15	Abstract 4739: miR-627 and histone demethylase JMJD1A as new therapeutic targets in colon cancer. , 2012, , .		O
16	Therapeutic Targeting of PIM Protein Kinases in a Subset of T-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 2742-2742.	1.4	0
17	Abstract 5820: Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. , 2017, , .		O
18	Abstract 3017: Role of long noncoding RNA H19 in driving enzalutamide resistant neuroendocrine prostate cancer. , 2019, , .		0

#	Article	IF	CITATIONS
19	Abstract PRO1: Phosphorylation of DEPDC5 by the Pim-1 protein kinase, a cancer driver, stimulates mTORC1 activity by regulating the DEPDC5- Rag GTPase interaction., 2020,,.		O
20	ROS Induced by Chemo- and Targeted Therapy Promote Apoptosis in Cancer Cells., 2022,, 583-598.		O
21	Oxidative Stress in Cancer: Therapeutic Implications of Small-Molecule Kinase Inhibitors., 2022,, 1-17.		O
22	Synthesis of 2-oxoquinoline derivatives as dual pim and mTORC protein kinase inhibitors. Medicinal Chemistry Research, 0 , , .	2.4	0