

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5041103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Research, 2022, 15, 637-643.	10.4	16
2	Verification and Analysis of Single-Molecule SERS Events via Polarization-Selective Raman Measurement. Analytical Chemistry, 2022, 94, 1046-1051.	6.5	4
3	Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 137401.	0.5	2
4	Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. Nanoscale Horizons, 2021, 6, 186-191.	8.0	33
5	The origin of ultrasensitive SERS sensing beyond plasmonics. Frontiers of Physics, 2021, 16, 1.	5.0	53
6	Role of dispersion relation effect in topological surface-enhanced Raman scattering. Cell Reports Physical Science, 2021, 2, 100488.	5.6	6
7	Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2021, 13, 51618-51627.	8.0	26
8	Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations. Advanced Functional Materials, 2020, 30, 1907218.	14.9	209
9	Plasmonic metal carbide SERS chips. Journal of Materials Chemistry C, 2020, 8, 14523-14530.	5.5	14
10	Flexible Surface-Enhanced Raman Scattering Chip: A Universal Platform for Real-Time Interfacial Molecular Analysis with Femtomolar Sensitivity. ACS Applied Materials & Interfaces, 2020, 12, 54174-54180.	8.0	27
11	Surface-Enhanced Raman Scattering Monitoring of Oxidation States in Defect-Engineered Two-Dimensional Transition Metal Dichalcogenides. Journal of Physical Chemistry Letters, 2020, 11, 7981-7987.	4.6	17
12	Selective Outâ€ofâ€Plane Optical Coupling between Vertical and Planar Microrings in a 3D Configuration. Advanced Optical Materials, 2020, 8, 2000782.	7.3	2
13	Hotspots on the Move: Active Molecular Enrichment by Hierarchically Structured Micromotors for Ultrasensitive SERS Sensing. ACS Applied Materials & Interfaces, 2020, 12, 28783-28791.	8.0	42
14	Improving the performance of light-emitting diodes via plasmonic-based strategies. Journal of Applied Physics, 2020, 127, .	2.5	30
15	Alloy Engineering in Few‣ayer Manganese Phosphorus Trichalcogenides for Surfaceâ€Enhanced Raman Scattering. Advanced Functional Materials, 2020, 30, 1910171.	14.9	48
16	High SERS Sensitivity Enabled by Synergistically Enhanced Photoinduced Charge Transfer in Amorphous Nonstoichiometric Semiconducting Films. Advanced Materials Interfaces, 2019, 6, 1901133.	3.7	42
17	Layered α-TiCl ₃ : Microsheets on YSZ Substrates for Ethylene Polymerization with Enhanced Activity. Chemistry of Materials, 2019, 31, 5305-5313.	6.7	5
18	Chromium Trihalides Cr <i>X</i> ₃ (<i>X</i> = Cl, Br, I): Direct Deposition of Micro―and Nanosheets on Substrates by Chemical Vapor Transport. Advanced Materials Interfaces, 2019, 6, 1901410.	3.7	37

Qi Hao

#	Article	IF	CITATIONS
19	Deterministic Yet Flexible Directional Light Emission from Spiral Nanomembrane Cavities. ACS Photonics, 2019, 6, 2537-2544.	6.6	16
20	Simulation and synthesis of $\hat{I}\pm$ -MoCl3 nanosheets on substrates by short time chemical vapor transport. Nano Structures Nano Objects, 2019, 19, 100324.	3.5	12
21	Graphene-Activated Optoplasmonic Nanomembrane Cavities for Photodegradation Detection. ACS Applied Materials & Interfaces, 2019, 11, 15891-15897.	8.0	35
22	Surfaceâ€Enhanced Raman Scattering Enabled by Metalâ€Coated Dielectric Microspheres. Physica Status Solidi (B): Basic Research, 2019, 256, 1800379.	1.5	9
23	External Strain Enabled Post-Modification of Nanomembrane-Based Optical Microtube Cavities. ACS Photonics, 2018, 5, 2060-2067.	6.6	13
24	<i>In Situ</i> Generation of Plasmonic Nanoparticles for Manipulating Photon–Plasmon Coupling in Microtube Cavities. ACS Nano, 2018, 12, 3726-3732.	14.6	20
25	VO ₂ /TiN Plasmonic Thermochromic Smart Coatings for Roomâ€Temperature Applications. Advanced Materials, 2018, 30, 1705421.	21.0	179
26	Boosting the Photoluminescence of Monolayer MoS ₂ on Highâ€Density Nanodimer Arrays with Subâ€10 nm Gap. Advanced Optical Materials, 2018, 6, 1700984.	7.3	73
27	Strong Coupling in a Photonic Molecule Formed by Trapping a Microsphere in a Microtube Cavity. Advanced Optical Materials, 2018, 6, 1700842.	7.3	22
28	Curved Nanomembrane-Based Concentric Ring Cavities for Supermode Hybridization. Nano Letters, 2018, 18, 7261-7267.	9.1	15
29	An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating currentÂcharging. Nature Communications, 2018, 9, 2055.	12.8	153
30	Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology, 2017, 28, 105301.	2.6	60
31	Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask. ACS Applied Materials & Interfaces, 2017, 9, 36199-36205.	8.0	50
32	Self-assembled bundled TiO2nanowire arrays encapsulated with indium tin oxide for broadband absorption in plasmonic photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 27059-27064.	2.8	5
33	Assembly of gold nanoparticles into aluminum nanobowl array. Scientific Reports, 2017, 7, 2322.	3.3	33
34	Plasmon–phonon coupling in monolayer WS2. Applied Physics Letters, 2016, 108, .	3.3	21
35	Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO ₂ Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 24509-24516.	8.0	62
36	Exploring indium tin oxide capped titanium dioxide nanolace arrays for plasmonic photocatalysis. RSC Advances, 2016, 6, 12611-12615.	3.6	5

Qi Hao

#	Article	IF	CITATIONS
37	Unusual anti-bacterial behavior and corrosion resistance of magnesium alloy coated with diamond-like carbon. RSC Advances, 2016, 6, 14756-14762.	3.6	13
38	Controlled Assembly of Plasmonic Nanostructures Templated by Porous Anodic Alumina Membranes. International Journal of Behavioral and Consultation Therapy, 2016, , 249-274.	0.4	2
39	Aluminum plasmonic photocatalysis. Scientific Reports, 2015, 5, 15288.	3.3	59
40	Facile synthesis of gold-capped TiO2 nanocomposites for surface-enhanced Raman scattering. Materials Chemistry and Physics, 2015, 153, 88-92.	4.0	5
41	Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates. Scientific Reports, 2014, 4, 6014.	3.3	24
42	Tunable fluorescence from patterned silver nano-island arrays for sensitive sub-cell imaging. Journal Physics D: Applied Physics, 2013, 46, 495302.	2.8	7
43	Surface and interference co-enhanced Raman scattering from indium tin oxide nanocap arrays. Applied Surface Science, 2013, 280, 343-348.	6.1	10
44	Silver Nanovoid Arrays for Surface-Enhanced Raman Scattering. Langmuir, 2012, 28, 8799-8803.	3.5	25
45	Surfaced-enhanced cellular fluorescence imaging. Progress in Surface Science, 2012, 87, 23-45.	8.3	26
46	Ultra-Dense Plasmonic Nanogap Arrays for Reorientable Molecular Fluorescence Enhancement and Spectrum Reshaping. Nanoscale, 0, , .	5.6	1