Nicolaas A P Franken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gamma-H2AX Foci Decay Ratio as a Stronger Predictive Factor of Late Radiation Toxicity Than Dose-Volume Parameters in a Prospective Cohort of Prostate Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2022, 112, 212-221.	0.8	4
2	A Comparison between Patient- and Physician-Reported Late Radiation Toxicity in Long-Term Prostate Cancer Survivors. Cancers, 2022, 14, 1670.	3.7	3
3	Non-Invasive Imaging and Scoring of Peritoneal Metastases in Small Preclinical Animal Models Using Ultrasound: A Preliminary Trial. Biomedicines, 2022, 10, 1610.	3.2	1
4	Simulating drug penetration during hyperthermic intraperitoneal chemotherapy. Drug Delivery, 2021, 28, 145-161.	5.7	19
5	Hyperthermia-Based Anti-Cancer Treatments. Cancers, 2021, 13, 1240.	3.7	38
6	PARP1-Inhibition Sensitizes Cervical Cancer Cell Lines for Chemoradiation and Thermoradiation. Cancers, 2021, 13, 2092.	3.7	4
7	Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges. Cancers, 2021, 13, 3430.	3.7	14
8	Demonstration of treatment planning software for hyperthermic intraperitoneal chemotherapy in a rat model. International Journal of Hyperthermia, 2021, 38, 38-54.	2.5	8
9	The Temperature-Dependent Effectiveness of Platinum-Based Drugs Mitomycin-C and 5-FU during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Colorectal Cancer Cell Lines. Cells, 2020, 9, 1775.	4.1	38
10	A Four-Inflow Construction to Ensure Thermal Stability and Uniformity during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Rats. Cancers, 2020, 12, 3516.	3.7	7
11	HyCHEED System for Maintaining Stable Temperature Control during Preclinical Irreversible Electroporation Experiments at Clinically Relevant Temperature and Pulse Settings. Sensors, 2020, 20, 6227.	3.8	4
12	Radiosensitization by Hyperthermia: The Effects of Temperature, Sequence, and Time Interval in Cervical Cell Lines. Cancers, 2020, 12, 582.	3.7	25
13	Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Advanced Drug Delivery Reviews, 2020, 163-164, 84-97.	13.7	81
14	Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Frontiers in Oncology, 2020, 10, 528.	2.8	12
15	Outcome of a rabbit model for late irradiation effects in mandibular oral mucosa and bone: A pilot study. Journal of Clinical and Translational Research, 2020, 6, 225-235.	0.3	1
16	Increased uptake of doxorubicin by cells undergoing heat stress does not explain its synergistic cytotoxicity with hyperthermia. International Journal of Hyperthermia, 2019, 36, 711-719.	2.5	20
17	Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers, 2019, 11, 60.	3.7	142
18	Variation in Clinical Application of Hyperthermic Intraperitoneal Chemotherapy: A Review. Cancers, 2019, 11, 78.	3.7	64

#	Article	IF	CITATIONS
19	The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Frontiers in Oncology, 2019, 9, 412.	2.8	17
20	Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. International Journal of Hyperthermia, 2019, 36, 47-63.	2.5	35
21	Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. International Journal of Hyperthermia, 2018, 34, 30-38.	2.5	34
22	Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1- <i>i</i> . International Journal of Hyperthermia, 2018, 34, 39-48.	2.5	18
23	The clinical benefit of hyperthermia in pancreatic cancer: a systematic review. International Journal of Hyperthermia, 2018, 34, 969-979.	2.5	41
24	Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility. International Journal of Oncology, 2018, 54, 209-218.	3.3	1
25	The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. International Journal of Hyperthermia, 2018, 34, 901-909.	2.5	23
26	The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiation Oncology, 2018, 13, 96.	2.7	301
27	Enhancement of Radiation Effectiveness in Cervical Cancer Cells by Combining Ionizing Radiation with Hyperthermia and Molecular Targeting Agents. International Journal of Molecular Sciences, 2018, 19, 2420.	4.1	13
28	Targeting therapy-resistant cancer stem cells by hyperthermia. International Journal of Hyperthermia, 2017, 33, 419-427.	2.5	61
29	Prostate Cancer Patients with Late Radiation Toxicity Exhibit Reduced Expression of Genes Involved in DNA Double-Strand Break Repair and Homologous Recombination. Cancer Research, 2017, 77, 1485-1491.	0.9	15
30	A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiation Oncology, 2017, 12, 75.	2.7	60
31	3D radiobiological evaluation of combined radiotherapy and hyperthermia treatments. International Journal of Hyperthermia, 2017, 33, 160-169.	2.5	31
32	Sensitizing thermochemotherapy with a PARP1-inhibitor. Oncotarget, 2017, 8, 16303-16312.	1.8	14
33	Enhancing synthetic lethality of PARP-inhibitor and cisplatin in BRCA-proficient tumour cells with hyperthermia. Oncotarget, 2017, 8, 28116-28124.	1.8	23
34	Boosting the effects of hyperthermia-based anticancer treatments by HSP90 inhibition. Oncotarget, 2017, 8, 97490-97503.	1.8	20
35	Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget, 2016, 7, 65504-65513.	1.8	38
36	Dynamics of chromosomal aberrations, induction of apoptosis, BRCA2 degradation and sensitization to radiation by hyperthermia. International Journal of Molecular Medicine, 2016, 38, 243-250.	4.0	6

#	Article	IF	CITATIONS
37	Analysis of enhancement at small and large radiation doses for effectiveness of inactivation in cultured cells by combining two agents with radiation. International Journal of Radiation Biology, 2016, 92, 521-526.	1.8	3
38	Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiation Oncology, 2016, 11, 14.	2.7	37
39	Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation. Radiation Research, 2016, 185, 190.	1.5	26
40	Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiation Oncology, 2015, 10, 165.	2.7	220
41	Hyperthermia Selectively Targets Human Papillomavirus in Cervical Tumors via p53-Dependent Apoptosis. Cancer Research, 2015, 75, 5120-5129.	0.9	53
42	Enhancement of radiation effectiveness by hyperthermia and incorporation of halogenated pyrimidines at low radiation doses as compared with high doses: Implications for mechanisms. International Journal of Radiation Biology, 2014, 90, 313-317.	1.8	16
43	Decay of \hat{I}^3 -H2AX foci correlates with potentially lethal damage repair and P53 status in human colorectal carcinoma cells. Cellular and Molecular Biology Letters, 2014, 19, 37-51.	7.0	12
44	Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity. International Journal of Radiation Oncology Biology Physics, 2014, 88, 664-670.	0.8	39
45	Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions. International Journal of Radiation Oncology Biology Physics, 2014, 88, 739-745.	0.8	60
46	Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. DNA Repair, 2013, 12, 38-45.	2.8	42
47	In Regard to Ohri N etÂal. International Journal of Radiation Oncology Biology Physics, 2013, 86, 598.	0.8	3
48	Cell survival and radiosensitisation: Modulation of the linear and quadratic parameters of the LQ model. International Journal of Oncology, 2013, 42, 1501-1515.	3.3	88
49	Decay of γ-H2AX foci correlates with potentially lethal damage repair in prostate cancer cells. Oncology Reports, 2013, 29, 2175-2180.	2.6	16
50	Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells. Oncology Reports, 2012, 27, 769-74.	2.6	38
51	Chromatin mobility is increased at sites of DNA double-strand breaks. Journal of Cell Science, 2012, 125, 2127-33.	2.0	125
52	Comparison of RBE values of high- LET $\hat{i}\pm$ -particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death. Radiation Oncology, 2011, 6, 64.	2.7	77
53	Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9851-9856.	7.1	301
54	Radiosensitizing effect of the histone acetyltransferase inhibitor anacardic acid on various mammalian cell lines. Oncology Letters, 2010, 1, 765-769.	1.8	6

#	Article	IF	CITATIONS
55	Cyclopentenylcytosine does not enhance cisplatin-induced radiosensitization in human lung tumour cells. Oncology Letters, 2010, 1, 537-540.	1.8	2
56	PCC and COBRA-FISH a new tool to characterize primary cervical carcinomas: To assess hall-marks and stage specificity. Cancer Letters, 2010, 287, 67-74.	7.2	14
57	Transient inhibition of Calyculin A induced premature chromosome condensation by hyperthermia. International Journal of Hyperthermia, 2009, 25, 220-228.	2.5	Ο
58	Quantification of the Contribution of Hyperthermia to Results of Cervical Cancer Trials: In Regard to Plataniotis and Dale (Int J Radiat Oncol Biol Phys 2009;73:1538–1544). International Journal of Radiation Oncology Biology Physics, 2009, 75, 634.	0.8	3
59	Chromosome Fragments have the Potential to Predict Hyperthermia-induced Radio-sensitization in Two Different Human Tumor Cell Lines. Journal of Radiation Research, 2008, 49, 465-472.	1.6	6
60	Hyperthermia, cisplatin and radiation trimodality treatment: A promising cancer treatment? A review from preclinical studies to clinical application. International Journal of Hyperthermia, 2007, 23, 329-341.	2.5	58
61	Effect of 41 degrees C and 43 degrees C on cisplatin radiosensitization in two human carcinoma cell lines with different sensitivities for cisplatin. Oncology Reports, 2007, 18, 219-26.	2.6	19
62	Gadolinium enhances the sensitivity of SW-1573 cells for thermal neutron irradiation. Oncology Reports, 2006, 15, 715-20.	2.6	11
63	Clonogenic assay of cells in vitro. Nature Protocols, 2006, 1, 2315-2319.	12.0	3,193
64	Effects of cisplatin and Î ³ -irradiation on cell survival, the induction of chromosomal aberrations and apoptosis in SW-1573 cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 594, 148-154.	1.0	28
65	Effect of hyperthermia on uptake and cytotoxicity of cisplatin in cultured murine mammary carcinoma cells. Oncology Reports, 2005, 14, 561-7.	2.6	14
66	Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions. International Journal of Oncology, 2004, 24, 1027.	3.3	2
67	Effects of Gemcitabine on Cell Survival and Chromosome Aberrations after Pulsed Low Dose-rate Irradiation. Journal of Radiation Research, 2004, 45, 111-118.	1.6	11
68	Differential Response to Radiation of TP53-Inactivated Cells by Overexpression of Dominant-Negative Mutant TP53 or HPVE6. Radiation Research, 2004, 161, 504-510.	1.5	9
69	Repair of Potentially Lethal Damage does not Depend on Functional TP53 in Human Glioblastoma Cells. Radiation Research, 2004, 161, 511-516.	1.5	12
70	Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions. International Journal of Oncology, 2004, 24, 1027-31.	3.3	4
71	Colour junctions as predictors of radiosensitivity: X-irradiation combined with gemcitabine in a lung carcinoma cell line. Journal of Cancer Research and Clinical Oncology, 2003, 129, 597-603.	2.5	10
72	Importance of TP53 and RB in the Repair of Potentially Lethal Damage and Induction of Color Junctions after Exposure to Ionizing Radiation. Radiation Research, 2002, 158, 707-714.	1.5	19

#	Article	IF	CITATIONS
73	Induction of chromosome aberrations in unirradiated chromatin after partial irradiation of a cell nucleus. International Journal of Radiation Biology, 2002, 78, 239-247.	1.8	24
74	Chromosome aberrations detected by FISH and correlation with cell survival after irradiation at various dose-rates and after bromodeoxyuridine radiosensitization. International Journal of Radiation Biology, 2002, 78, 203-210.	1.8	8
75	Radiosensitization by Bromodeoxyuridine and Hyperthermia: Analysis of Linear and Quadratic Parameters of Radiation Survival Curves of Two Human Tumor Cell Lines. Journal of Radiation Research, 2001, 42, 179-190.	1.6	26
76	Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: Implications for combined tumor treatments (Review). International Journal of Oncology, 2001, 19, 247-56.	3.3	32
77	Wild-type p53-function is not required for hyperthermia-enhanced cytotoxicity of cisplatin. International Journal of Hyperthermia, 2001, 17, 337-346.	2.5	12
78	Inactivation of p53 and of pRb protects human colorectal carcinoma cells against hyperthermia-induced cytotoxicity and apoptosis. Journal of Cancer Research and Clinical Oncology, 1999, 125, 549-555.	2.5	29
79	Correlation between cell reproductive death and chromosome aberrations assessed by FISH for low and high doses of radiation and sensitization by iodo-deoxyuridine in human SW-1573 cells. International Journal of Radiation Biology, 1999, 75, 293-299.	1.8	32
80	Hyperthermia and incorporation of halogenated pyrimidines: Radiosensitization in cultured rodent and human tumor cells. International Journal of Radiation Oncology Biology Physics, 1997, 39, 489-496.	0.8	20