List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human T Cell Receptor γδCells Recognize Endogenous Mevalonate Metabolites in Tumor Cells. Journal of Experimental Medicine, 2003, 197, 163-168.	8.5	769
2	Monokine production by microglial cell clones. European Journal of Immunology, 1989, 19, 1443-1448.	2.9	355
3	Butyrophilin 3A1 binds phosphorylated antigens and stimulates human Î ³ δT cells. Nature Immunology, 2013, 14, 908-916.	14.5	351
4	Diacylated Sulfoglycolipids Are Novel Mycobacterial Antigens Stimulating CD1-restricted T Cells during Infection with Mycobacterium tuberculosis. Journal of Experimental Medicine, 2004, 199, 649-659.	8.5	281
5	Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRÎ ² repertoire. Nature Communications, 2014, 5, 3866.	12.8	267
6	Self glycolipids as T-cell autoantigens. European Journal of Immunology, 1999, 29, 1667-1675.	2.9	256
7	Assistance of Microbial Glycolipid Antigen Processing by CD1e. Science, 2005, 310, 1321-1324.	12.6	229
8	Presentation of the Same Glycolipid by Different CD1 Molecules. Journal of Experimental Medicine, 2002, 195, 1013-1021.	8.5	200
9	Ligands for natural killer cell–activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood, 2005, 105, 3615-3622.	1.4	183
10	Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nature Immunology, 2012, 13, 474-480.	14.5	183
11	Human Vγ9-VĨ´2 cells are stimulated in a crossreactive fashion by a variety of phosphorylated metabolites. European Journal of Immunology, 1995, 25, 2052-2058.	2.9	168
12	Recognition of lipid antigens by T cells. Nature Reviews Immunology, 2005, 5, 485-496.	22.7	166
13	Mycolic Acids Constitute a Scaffold for Mycobacterial Lipid Antigens Stimulating CD1-Restricted T Cells. Chemistry and Biology, 2009, 16, 82-92.	6.0	148
14	The αβ T Cell Response to Self-Glycolipids Shows a Novel Mechanism of CD1b Loading and a Requirement for Complex Oligosaccharides. Immunity, 2000, 13, 255-264.	14.3	144
15	The Immunology of CD1- and MR1-Restricted T Cells. Annual Review of Immunology, 2016, 34, 479-510.	21.8	136
16	Highâ€frequency and adaptiveâ€like dynamics of human CD1 selfâ€reactive T cells. European Journal of Immunology, 2011, 41, 602-610.	2.9	116
17	Bacterial Infections Promote T Cell Recognition of Self-Glycolipids. Immunity, 2005, 22, 763-772.	14.3	109
18	Functionally diverse human T cells recognize non-microbial antigens presented by MR1. ELife, 2017, 6, .	6.0	100

#	Article	IF	CITATIONS
19	A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nature Chemical Biology, 2014, 10, 950-956.	8.0	96
20	A novel self-lipid antigen targets human T cells against CD1c+ leukemias. Journal of Experimental Medicine, 2014, 211, 1363-1377.	8.5	80
21	Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b. EMBO Journal, 2006, 25, 3684-3692.	7.8	75
22	Fatty Acyl Structures of Mycobacterium tuberculosis Sulfoglycolipid Govern T Cell Response. Journal of Immunology, 2009, 182, 7030-7037.	0.8	63
23	Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism. European Journal of Immunology, 2007, 37, 1431-1441.	2.9	62
24	The <i>HOX</i> gene network in hepatocellular carcinoma. International Journal of Cancer, 2011, 129, 2577-2587.	5.1	60
25	Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. Mucosal Immunology, 2018, 11, 1060-1070.	6.0	60
26	Dysregulation of the host mevalonate pathway during early bacterial infection activates human TCR γδ cells. European Journal of Immunology, 2008, 38, 2200-2209.	2.9	59
27	Functional CD1a is stabilized by exogenous lipids. European Journal of Immunology, 2006, 36, 1083-1092.	2.9	57
28	Invariant natural killer T cells: Linking inflammation and neovascularization in human atherosclerosis. European Journal of Immunology, 2010, 40, 3268-3279.	2.9	55
29	Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17755-17760.	7.1	52
30	Fine tuning by human CD1e of lipid-specific immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14228-14233.	7.1	51
31	Synthesis of Diacylated Trehalose Sulfates: Candidates for a Tuberculosis Vaccine. Angewandte Chemie - International Edition, 2008, 47, 9734-9738.	13.8	48
32	Locally inducible CD66a (CEACAM1) as an amplifier of the human intestinal T cell response. European Journal of Immunology, 2000, 30, 2593-2603.	2.9	47
33	Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13230-13235.	7.1	47
34	The T-Cell Response to Lipid Antigens of Mycobacterium tuberculosis. Frontiers in Immunology, 2014, 5, 219.	4.8	47
35	Expression of a transgenic T cell receptor beta chain enhances collagen-induced arthritis Journal of Experimental Medicine, 1992, 176, 381-388.	8.5	45
36	Genetic control of susceptibility to collagen-induced arthritis in T cell receptor ?-chain transgenic mice. Arthritis and Rheumatism, 1998, 41, 256-262.	6.7	40

#	Article	IF	CITATIONS
37	Total synthesis, stereochemical elucidation and biological evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis. Chemical Science, 2013, 4, 709-716.	7.4	40
38	Novel insights into lipid antigen presentation. Trends in Immunology, 2012, 33, 103-111.	6.8	36
39	Cutting Edge: A Naturally Occurring Mutation in CD1e Impairs Lipid Antigen Presentation. Journal of Immunology, 2008, 180, 3642-3646.	0.8	35
40	Early Recycling Compartment Trafficking of CD1a Is Essential for Its Intersection and Presentation of Lipid Antigens. Journal of Immunology, 2010, 184, 1235-1241.	0.8	35
41	Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 195-218.	4.5	35
42	Phosphoantigen Presentation to TCR γδCells, a Conundrum Getting Less Gray Zones. Frontiers in Immunology, 2014, 5, 679.	4.8	34
43	A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology, 2016, 221, 1227-1236.	1.9	33
44	Lysosomal Lipases PLRP2 and LPLA2 Process Mycobacterial Multi-acylated Lipids and Generate T Cell Stimulatory Antigens. Cell Chemical Biology, 2016, 23, 1147-1156.	5.2	32
45	Functional Inactivation in the Whole Population of Human Vγ9/Vδ2 T Lymphocytes Induced By a Nonpeptidic Antagonist. Journal of Experimental Medicine, 1997, 185, 91-98.	8.5	29
46	Regulation of CD1a Surface Expression and Antigen Presentation by Invariant Chain and Lipid Rafts. Journal of Immunology, 2008, 180, 980-987.	0.8	29
47	Deciphering the Role of CD1e Protein in Mycobacterial Phosphatidyl-myo-inositol Mannosides (PIM) Processing for Presentation by CD1b to T Lymphocytes. Journal of Biological Chemistry, 2012, 287, 31494-31502.	3.4	29
48	Synthesis of α-Galactosyl Ceramide (KRN7000) and Analogues Thereof via a Common Precursor and Their Preliminary Biological Assessment. Journal of Organic Chemistry, 2008, 73, 9192-9195.	3.2	28
49	Nonclassical T Cells and Their Antigens in Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018473-a018473.	6.2	27
50	Contact sensitizers trigger human CD1â€autoreactive Tâ€cell responses. European Journal of Immunology, 2017, 47, 1171-1180.	2.9	27
51	The Conventional Nature of Non-MHC-Restricted T Cells. Frontiers in Immunology, 2018, 9, 1365.	4.8	27
52	Genetic Control of Tolerance to Type II Collagen and Development of Arthritis in an Autologous Collagen-Induced Arthritis Model. Journal of Immunology, 2003, 171, 3493-3499.	0.8	26
53	Mechanisms of lipid-antigen generation and presentation to T cells. Trends in Immunology, 2006, 27, 485-492.	6.8	25
54	How the immune system detects lipid antigens. Progress in Lipid Research, 2010, 49, 120-127.	11.6	23

#	Article	IF	CITATIONS
55	MR1-Restricted T Cells Are Unprecedented Cancer Fighters. Frontiers in Immunology, 2020, 11, 751.	4.8	22
56	Presentation of lipid antigens to T cells. Immunology Letters, 2008, 117, 1-8.	2.5	21
57	Simplified Deoxypropionate Acyl Chains for <i>Mycobacterium tuberculosis</i> Sulfoglycolipid Analogues: Chain Length is Essential for High Antigenicity. ChemBioChem, 2013, 14, 2413-2417.	2.6	21
58	The cellular and biochemical rules of lipid antigen presentation. European Journal of Immunology, 2009, 39, 2648-2656.	2.9	20
59	Stereoselective Synthesis and Immunogenic Activity of theC-Analogue of Sulfatide. Organic Letters, 2006, 8, 3255-3258.	4.6	19
60	T cells specific for lipid antigens. Immunologic Research, 2012, 53, 191-199.	2.9	18
61	Synthesis of Sulfated Galactocerebrosides from an Orthogonal β-D-Galactosylceramide Scaffold for the Study of CD1–Antigen Interactions. Chemistry - A European Journal, 2006, 12, 5587-5595.	3.3	16
62	Synthesis and evaluation of human T cell stimulating activity of an α-sulfatide analogue. Bioorganic and Medicinal Chemistry, 2007, 15, 5529-5536.	3.0	16
63	How T lymphocytes recognize lipid antigens. FEBS Letters, 2006, 580, 5580-5587.	2.8	15
64	Globotriaosylceramide inhibits iNKTâ€cell activation in a CD1dâ€dependent manner. European Journal of Immunology, 2016, 46, 147-153.	2.9	15
65	Synthesis of a Fluorescent Sulfatide for the Study of CD1 Antigen Binding Properties. European Journal of Organic Chemistry, 2004, 2004, 4755-4761.	2.4	13
66	A General and Stereoselective Route to α- or β-Galactosphingolipids via a Common Four-Carbon Building Block. Journal of Organic Chemistry, 2007, 72, 7757-7760.	3.2	13
67	T cell recognition of non-peptidic antigens in infectious diseases. Indian Journal of Medical Research, 2013, 138, 620-31.	1.0	12
68	<i>Staphylococcus aureus </i> Inhibits Contact Sensitivity to Oxazolone by Activating Suppressor B Cells in Mice. International Archives of Allergy and Immunology, 1984, 73, 269-273.	2.1	11
69	A new aspect in glycolipid biology: glycosphingolipids as antigens recognized by T lymphocytes. Neurochemical Research, 2002, 27, 675-685.	3.3	11
70	Hybrid polymersomes: facile manipulation of vesicular surfaces for enhancing cellular interaction. Journal of Materials Chemistry B, 2013, 1, 5751.	5.8	11
71	Targeting leukemia by CD1c-restricted T cells specific for a novel lipid antigen. Oncolmmunology, 2015, 4, e970463.	4.6	11
72	CD1a and CD1b surface expression is independent from de novo synthesized glycosphingolipids. European Journal of Immunology, 2003, 33, 29-37.	2.9	9

#	Article	IF	CITATIONS
73	Self Glycosphingolipids: New Antigens Recognized by Autoreactive T Lymphocytes. Physiology, 2003, 18, 71-76.	3.1	8
74	How T cells get grip on lipid antigens. Current Opinion in Immunology, 2008, 20, 96-104.	5.5	8
75	The assembly of CD1e is controlled by an N-terminal propeptide which is processed in endosomal compartments. Biochemical Journal, 2009, 419, 661-668.	3.7	6
76	Antigen specificities and functional properties of MR1-restricted T cells. Molecular Immunology, 2021, 130, 148-153.	2.2	6
77	T suppressor cells as well as anti-hapten and anti-idiotype B lymphocytes regulate contact sensitivity to oxazolone in mice injected with purified protein derivative from Mycobacterium tuberculosis. Infection and Immunity, 1984, 45, 701-707.	2.2	6
78	Hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2) are involved in the down-regulation of CD1a lipid antigen presentation by HIV-1 Nef in dendritic cells. Virology, 2016, 487, 285-295.	2.4	5
79	â€~Bohemian Rhapsody' of MR1T cells. Nature Immunology, 2020, 21, 108-110.	14.5	5
80	Staphylococcus aureus-induced suppression of contact sensitivity in mice: Suppressor cells elicited by polyclonal B-cell activation are regulated by idiotype-anti-idiotype interactions. Cellular Immunology, 1985, 93, 508-519.	3.0	4
81	The Easy Virtue of CD1c. Immunity, 2010, 33, 831-833.	14.3	4
82	Professional Differences in Antigen Presentation to iNKT Cells. Immunity, 2014, 40, 5-7.	14.3	4
83	Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. Journal of Allergy and Clinical Immunology, 2016, 138, 1709-1712.e11.	2.9	4
84	Selection of phage-displayed human antibody fragments specific for CD1b presenting the Mycobacterium tuberculosis glycolipid Ac2SGL. International Journal of Mycobacteriology, 2016, 5, 120-127.	0.6	4
85	Polyclonal B Cell Activators Inhibit Contact Sensitivity to Oxazolone in Mice by Potentiating the Production of Anti-Hapten Antibodies that Induce T Suppressor Lymphocytes Acting through the Release of Soluble Factors. International Archives of Allergy and Immunology, 1985, 78, 391-395.	2.1	3
86	Human T cells engineered with a leukemia lipid-specific TCR enables donor-unrestricted recognition of CD1c-expressing leukemia. Nature Communications, 2021, 12, 4844.	12.8	3
87	Self glycolipids as T-cell autoantigens. , 1999, 29, 1667.		2
88	Isolation and Characterization of MAIT Cells from Human Tissue Biopsies. Methods in Molecular Biology, 2020, 2098, 23-38.	0.9	2
89	A Suppressor T-Cell Line Specific for the Nicotinic Cholinergic Receptor. Annals of the New York Academy of Sciences, 1987, 505, 639-654.	3.8	0
90	Extraction and Identification of T Cell Stimulatory Self-lipid Antigens. Bio-protocol, 2015, 5, .	0.4	0