
Guilhermino José Macêdo Fechine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5038921/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced thermally conductive TPU/graphene filaments for 3D printing produced by melt compounding. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
2	Molybdenum disulfide as a filler for a polymeric matrix at an ultralow content: Polystyrene case. Polymer Testing, 2021, 93, 106882.	4.8	17

Guilhermino José MacÃ≜do

#	Article	IF	CITATIONS
19	Screening effect of CVD graphene on the surface free energy of substrates. Physical Chemistry Chemical Physics, 2020, 22, 16672-16680.	2.8	4
20	Composition dependence in surface properties of poly(lactic acid)/graphene/carbon nanotube composites. Materials Chemistry and Physics, 2020, 249, 122702.	4.0	7
21	Higher thermal conductivity and mechanical enhancements in hybrid 2D polymer nanocomposites. Polymer Testing, 2020, 87, 106510.	4.8	23
22	Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dental Materials, 2019, 35, 403-413.	3.5	49
23	The role of physical structure and morphology on the photodegradation behaviour of polypropylene-graphene oxide nanocomposites. Polymer, 2019, 176, 146-158.	3.8	25
24	The "Superlubricity State―of Carbonaceous Fillers on Polyethylene-Based Composites in a Molten State. Macromolecules, 2019, 52, 9620-9631.	4.8	23
25	Adhesion between graphene and polymers: A surface analysis perspective. EXPRESS Polymer Letters, 2019, 13, 52-64.	2.1	6
26	Tuning of surface properties of poly(vinyl alcohol)/graphene oxide nanocomposites. Polymer Composites, 2019, 40, E312.	4.6	17
27	Transfer of Graphene CVD to Surface of Low Density Polyethylene (LDPE) and Poly(butylene) Tj ETQq1 1 C Environment, 2018, 26, 3187-3196.).784314 rgBT 5.0	/Overlock 10 Ta 11
28	Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Applied Surface Science, 2018, 440, 55-60.	6.1	15
29	Novel improvement in processing of polymer nanocomposite based on 2D materials as fillers. EXPRESS Polymer Letters, 2018, 12, 930-945.	2.1	33
30	Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS ₂ using multiphoton microscopy. 2D Materials, 2017, 4, 011006.	4.4	147
31	CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation. Surface and Coatings Technology, 2017, 311, 10-18.	4.8	33
32	Ultrafast charge transfer dynamics pathways in two-dimensional MoS ₂ –graphene heterostructures: a core-hole clock approach. Physical Chemistry Chemical Physics, 2017, 19, 29954-29962.	2.8	31
33	Photodegradation and Photostabilization of Poly(3-Hydroxybutyrate). Materials Research, 2016, 19, 759-764.	1.3	11
34	Thermo stabilisation of poly (butylene adipate-co-terephthalate). Polimeros, 2016, 26, 102-105.	0.7	11
35	The role of shear and stabilizer on PLA degradation. Polymer Testing, 2016, 51, 109-116.	4.8	77
36	Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater. Materials Research Express, 2016, 3, 035601.	1.6	6

#	Article	IF	CITATIONS
37	Micromechanical exfoliation of two-dimensional materials by a polymeric stamp. Materials Research Express, 2016, 3, 025303.	1.6	15
38	Melt processing of polymer biocomposites. Polimeros, 2015, 25, 133-136.	0.7	5
39	Desenvolvimento da metodologia para sÃntese do poli(ácido lático-co-ácido glicólico) para utilização na produção de fontes radioativas. Polimeros, 2015, 25, 317-325.	0.7	2
40	Melting and crystallization of poly(3-hydroxybutyrate): effect of heating/cooling rates on phase transformation. Polimeros, 2015, 25, 296-304.	0.7	41
41	Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015, 83, 224-231.	10.3	82
42	Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science, 2014, 131, .	2.6	34
43	Investigation of the effect of addition of calcium stearate on the properties of low-density polyethylene/poly(Îμ-caprolactone) blends. Journal of Materials Science, 2014, 49, 1544-1555.	3.7	5
44	Photostabilization of polystyrene/montmorillonite nanocomposite. A factorial experimental design 2 ⁴ . Journal of Applied Polymer Science, 2013, 128, 188-198.	2.6	4
45	Effect of prior photodegradation on the biodegradation of polypropylene/poly(3-hydroxybutyrate) blends. Polymer Engineering and Science, 2013, 53, 2109-2122.	3.1	17
46	The melting behaviour of poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polymer Testing, 2013, 32, 215-220.	4.8	48
47	Estudo do efeito do tipo de polipropileno na fotodegradação da blenda polipropileno/poliestireno de alto impacto. Polimeros, 2012, 22, 61-68.	0.7	11
48	Compatibilization of polypropylene/ poly(3â€hydroxybutyrate) blends. Journal of Applied Polymer Science, 2012, 123, 3511-3519.	2.6	22
49	Fotodegradação de compósitos de poliestireno/argila montmorilonita: efeito do tipo de argila e presenA§a de sal. Polimeros, 2012, 22, 13-21.	0.7	8
50	Photodegradation of thermodegraded polypropylene/highâ€impact polystyrene blends: Mechanical properties. Journal of Applied Polymer Science, 2011, 120, 770-779.	2.6	18
51	Photodegradation of poly(3-hydroxybutyrate). Polymer Degradation and Stability, 2010, 95, 2318-2327.	5.8	57
52	Evaluation of poly(ethylene terephthalate) photostabilisation using FTIR spectrometry of evolved carbon dioxide. Polymer Degradation and Stability, 2009, 94, 234-239.	5.8	21
53	Effect of UV radiation and proâ€oxidant on PP biodegradability. Polymer Engineering and Science, 2009, 49, 123-128.	3.1	16
54	Cracking formation on the surface of extruded photodegraded polypropylene plates. Polymer Engineering and Science, 2008, 48, 365-372.	3.1	32

Guilhermino José MacÃ≜do

#	Article	IF	CITATIONS
55	Stress cracking and photodegradation behavior of polycarbonate. The combination of two major causes of polymer failure. Polymer Engineering and Science, 2008, 48, 2003-2010.	3.1	17
56	Photooxidative behavior of polystyrene–montmorillonite nanocomposites. Polymer Engineering and Science, 2008, 48, 1511-1517.	3.1	18
57	Stress Cracking and Photodegradation: The Combination of Two Major Causes of HIPS Failure. Macromolecular Symposia, 2007, 258, 162-169.	0.7	10
58	Photodegradation of multilayer films based on PET copolymers. Journal of Applied Polymer Science, 2007, 104, 51-57.	2.6	31
59	Avaliação da fotodegradação de poliolefinas através de exposição natural e artificial. Quimica Nova, 2006, 29, 674-680.	0.3	21
60	Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction. Polymer, 2006, 47, 8414-8419.	3.8	48
61	Fluorescence polarization and rheological studies of the poly(N-vinyl-2-pyrrolidone) hydrogels produced by UV radiation. Polymer, 2006, 47, 2629-2633.	3.8	25
62	Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers. Polymer, 2004, 45, 2303-2308.	3.8	124
63	Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer, 2004, 45, 4705-4709.	3.8	66
64	The effect of ultraviolet stabilizers on the photodegradation of poly(ethylene terephthalate). Polymer Degradation and Stability, 2002, 75, 153-159.	5.8	84
65	Structural changes during photodegradation of poly(ethylene terephthalate). Journal of Materials Science, 2002, 37, 4979-4984.	3.7	47
66	High abrasive wear resistance polyethylene blends: an adapted Ratner–Lancaster correlation. Polymer Bulletin, 0, , 1.	3.3	1
67	Tailoring the graphene oxide chemical structure and morphology as a key to polypropylene nanocomposite performance. Polymer Composites, 0, , .	4.6	6