
Guilhermino José Macêdo Fechine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5038921/publications.pdf

Version: 2024-02-01

Guilhermino José MacÃ≜do

#	Article	IF	CITATIONS
1	Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS ₂ using multiphoton microscopy. 2D Materials, 2017, 4, 011006.	4.4	147
2	Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers. Polymer, 2004, 45, 2303-2308.	3.8	124
3	The effect of ultraviolet stabilizers on the photodegradation of poly(ethylene terephthalate). Polymer Degradation and Stability, 2002, 75, 153-159.	5.8	84
4	Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015, 83, 224-231.	10.3	82
5	The role of shear and stabilizer on PLA degradation. Polymer Testing, 2016, 51, 109-116.	4.8	77
6	Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer, 2004, 45, 4705-4709.	3.8	66
7	Photodegradation of poly(3-hydroxybutyrate). Polymer Degradation and Stability, 2010, 95, 2318-2327.	5.8	57
8	Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dental Materials, 2019, 35, 403-413.	3.5	49
9	Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction. Polymer, 2006, 47, 8414-8419.	3.8	48
10	The melting behaviour of poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polymer Testing, 2013, 32, 215-220.	4.8	48
11	Structural changes during photodegradation of poly(ethylene terephthalate). Journal of Materials Science, 2002, 37, 4979-4984.	3.7	47
12	Melting and crystallization of poly(3-hydroxybutyrate): effect of heating/cooling rates on phase transformation. Polimeros, 2015, 25, 296-304.	0.7	41
13	Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science, 2014, 131, .	2.6	34
14	CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation. Surface and Coatings Technology, 2017, 311, 10-18.	4.8	33
15	Novel improvement in processing of polymer nanocomposite based on 2D materials as fillers. EXPRESS Polymer Letters, 2018, 12, 930-945.	2.1	33
16	Cracking formation on the surface of extruded photodegraded polypropylene plates. Polymer Engineering and Science, 2008, 48, 365-372.	3.1	32
17	Photodegradation of multilayer films based on PET copolymers. Journal of Applied Polymer Science, 2007, 104, 51-57.	2.6	31
18	Ultrafast charge transfer dynamics pathways in two-dimensional MoS ₂ –graphene heterostructures: a core-hole clock approach. Physical Chemistry Chemical Physics, 2017, 19, 29954-29962.	2.8	31

Guilhermino José MacÃ≜do

#	Article	IF	CITATIONS
19	Fluorescence polarization and rheological studies of the poly(N-vinyl-2-pyrrolidone) hydrogels produced by UV radiation. Polymer, 2006, 47, 2629-2633.	3.8	25
20	The role of physical structure and morphology on the photodegradation behaviour of polypropylene-graphene oxide nanocomposites. Polymer, 2019, 176, 146-158.	3.8	25
21	The "Superlubricity State―of Carbonaceous Fillers on Polyethylene-Based Composites in a Molten State. Macromolecules, 2019, 52, 9620-9631.	4.8	23
22	Polymer Nanocomposites Based on Poly(ε-caprolactone), Hydroxyapatite and Graphene Oxide. Journal of Polymers and the Environment, 2020, 28, 331-342.	5.0	23
23	Higher thermal conductivity and mechanical enhancements in hybrid 2D polymer nanocomposites. Polymer Testing, 2020, 87, 106510.	4.8	23
24	Compatibilization of polypropylene/ poly(3â€hydroxybutyrate) blends. Journal of Applied Polymer Science, 2012, 123, 3511-3519.	2.6	22
25	Avaliação da fotodegradação de poliolefinas através de exposição natural e artificial. Quimica Nova, 2006, 29, 674-680.	0.3	21
26	Evaluation of poly(ethylene terephthalate) photostabilisation using FTIR spectrometry of evolved carbon dioxide. Polymer Degradation and Stability, 2009, 94, 234-239.	5.8	21
27	Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters. Nanomaterials, 2020, 10, 1160.	4.1	19
28	Photooxidative behavior of polystyrene–montmorillonite nanocomposites. Polymer Engineering and Science, 2008, 48, 1511-1517.	3.1	18
29	Photodegradation of thermodegraded polypropylene/highâ€impact polystyrene blends: Mechanical properties. Journal of Applied Polymer Science, 2011, 120, 770-779.	2.6	18
30	Understanding the unorthodox stabilization of liquid phase exfoliated molybdenum disulfide (MoS ₂) in water medium. Physical Chemistry Chemical Physics, 2020, 22, 1457-1465.	2.8	18
31	Stress cracking and photodegradation behavior of polycarbonate. The combination of two major causes of polymer failure. Polymer Engineering and Science, 2008, 48, 2003-2010.	3.1	17
32	Effect of prior photodegradation on the biodegradation of polypropylene/poly(3-hydroxybutyrate) blends. Polymer Engineering and Science, 2013, 53, 2109-2122.	3.1	17
33	Tuning of surface properties of poly(vinyl alcohol)/graphene oxide nanocomposites. Polymer Composites, 2019, 40, E312.	4.6	17
34	Molybdenum disulfide as a filler for a polymeric matrix at an ultralow content: Polystyrene case. Polymer Testing, 2021, 93, 106882.	4.8	17
35	Effect of UV radiation and proâ€oxidant on PP biodegradability. Polymer Engineering and Science, 2009, 49, 123-128.	3.1	16
36	Micromechanical exfoliation of two-dimensional materials by a polymeric stamp. Materials Research Express, 2016, 3, 025303.	1.6	15

Guilhermino José MacÃ≜do

#	Article	IF	CITATIONS
37	Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Applied Surface Science, 2018, 440, 55-60.	6.1	15
38	Effect of exfoliation medium on the morphology of multi-layer graphene oxide and its importance for Poly(Ethylene terephthalate) based nanocomposites. Polymer Testing, 2020, 90, 106742.	4.8	13
39	Crystallization kinetics, structure, and rheological behavior of poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 2841-2851.	10 Tf 50 6 3.1	567 Td (ter 13
40	Physico-chemical Characterization of PLA-based Composites Holding Carbon Nanofillers. Applied Composite Materials, 2021, 28, 1175-1192.	2.5	13
41			

#	Article	IF	CITATIONS
55	Artifact expression of polylactic acid/hydroxyapatite/graphene oxide nanocomposite in CBCT: a promising dental material. Clinical Oral Investigations, 2020, 24, 1695-1700.	3.0	6
56	Tailoring the graphene oxide chemical structure and morphology as a key to polypropylene nanocomposite performance. Polymer Composites, 0, , .	4.6	6
57	Investigation of the effect of addition of calcium stearate on the properties of low-density polyethylene/poly(ε-caprolactone) blends. Journal of Materials Science, 2014, 49, 1544-1555.	3.7	5
58	Melt processing of polymer biocomposites. Polimeros, 2015, 25, 133-136.	0.7	5
59	Photostabilization of polystyrene/montmorillonite nanocomposite. A factorial experimental design 2 ⁴ . Journal of Applied Polymer Science, 2013, 128, 188-198.	2.6	4
60	The "Superlubricity State―of Carbonaceous Fillers on Polymer Composites. Macromolecular Chemistry and Physics, 2020, 221, 2000192.	2.2	4
61	Screening effect of CVD graphene on the surface free energy of substrates. Physical Chemistry Chemical Physics, 2020, 22, 16672-16680.	2.8	4
62	Graphene oxide dispersion state in polystyrene-based composites below percolation threshold via linear melt rheology. Rheologica Acta, 2021, 60, 209-218.	2.4	3
63	Interface adjustment between poly(ethylene terephthalate) and graphene oxide in order to enhance mechanical and thermal properties of nanocomposites. Polymer Engineering and Science, 2021, 61, 1997-2011.	3.1	3
64	Enhanced thermally conductive TPU/graphene filaments for 3D printing produced by melt compounding. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
65	Desenvolvimento da metodologia para sÃntese do poli(ácido lático-co-ácido glicólico) para utilização na produção de fontes radioativas. Polimeros, 2015, 25, 317-325.	0.7	2
66	Role of Graphene Oxide on the Mechanical Behaviour of Polycarbonate-Urethane/Graphene Oxide Composites. Materials Research, 2021, 24, .	1.3	2
67	High abrasive wear resistance polyethylene blends: an adapted Ratner–Lancaster correlation. Polymer Bulletin, 0, , 1.	3.3	1