Alessandro Fantin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5037346/publications.pdf

Version: 2024-02-01

41 papers 2,893 citations

279798 23 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

4681 citing authors

#	Article	IF	CITATIONS
1	Quantifying and Characterizing Angiogenesis Using the Postnatal Mouse Retina. Methods in Molecular Biology, 2022, 2441, 63-73.	0.9	O
2	KIT is dispensable for physiological organ vascularisation in the embryo. Angiogenesis, 2022, 25, 343-353.	7.2	8
3	The Embryonic Mouse Hindbrain and Postnatal Retina as In Vivo Models to Study Angiogenesis. Methods in Molecular Biology, 2022, 2475, 275-287.	0.9	O
4	Evaluating VEGF-Induced Vascular Leakage Using the Miles Assay. Methods in Molecular Biology, 2022, 2475, 289-295.	0.9	0
5	Neuropilin 1 Regulation of Vascular Permeability Signaling. Biomolecules, 2021, 11, 666.	4.0	22
6	Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 638674.	3.7	5
7	KIT Is Required for Fetal Liver Hematopoiesis. Frontiers in Cell and Developmental Biology, 2021, 9, 648630.	3.7	9
8	PLXNA1 and PLXNA3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons. Development (Cambridge), 2019, 146, .	2.5	19
9	Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature, 2018, 562, 223-228.	27.8	116
10	HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast With Other GnRH Deficiency Genes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3420-3429.	3.6	38
11	Evaluating Vascular Hyperpermeability-inducing Agents in the Skin with the Miles Assay. Journal of Visualized Experiments, $2018, \ldots$	0.3	20
12	VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. Journal of Experimental Medicine, 2017, 214, 1049-1064.	8.5	53
13	Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation. Science Signaling, 2016, 9, ra42.	3.6	51
14	A Small Molecule Inhibitor of PDK1/PLCÎ ³ 1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion. Scientific Reports, 2016, 6, 26142.	3.3	26
15	2- and 6- <i>O</i> -sulfated proteoglycans have distinct and complementary roles in cranial axon guidance and motor neuron migration. Development (Cambridge), 2016, 143, 1907-13.	2.5	20
16	NRP1 function and targeting in neurovascular development and eye disease. Progress in Retinal and Eye Research, 2016, 52, 64-83.	15.5	63
17	Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 19-24.	2.4	39
18	The Mouse Hindbrain: An In Vivo Model to Analyze Developmental Angiogenesis. Methods in Molecular Biology, 2015, 1214, 29-40.	0.9	1

#	Article	IF	Citations
19	NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells. Cell Reports, 2015, 11, 1577-1590.	6.4	88
20	Imatinib may be ABL to improve anti-angiogenic therapy. Molecular and Cellular Oncology, 2015, 2, e968034.	0.7	3
21	VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development (Cambridge), 2015, 142, 314-9.	2.5	29
22	Neural Crest Cells in Cardiovascular Development. Current Topics in Developmental Biology, 2015, 111, 183-200.	2.2	57
23	Vascularisation of the central nervous system. Mechanisms of Development, 2015, 138, 26-36.	1.7	104
24	The Embryonic Mouse Hindbrain and Postnatal Retina as In Vivo Models to Study Angiogenesis. Methods in Molecular Biology, 2015, 1332, 177-188.	0.9	5
25	Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. Journal of Clinical Investigation, 2015, 125, 2413-2428.	8.2	97
26	Neural crest–derived SEMA3C activates endothelial NRP1 for cardiac outflow tract septation. Journal of Clinical Investigation, 2015, 125, 2661-2676.	8.2	63
27	P197Neuropilin (NRP) 1 hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Cardiovascular Research, 2014, 103, S35.1-S35.	3.8	0
28	Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development (Cambridge), 2014, 141, 556-562.	2.5	101
29	Neuropilin Regulation of Angiogenesis, Arteriogenesis, and Vascular Permeability. Microcirculation, 2014, 21, 315-323.	1.8	109
30	Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1–dependent ABL1 activation in endothelial cells. Journal of Experimental Medicine, 2014, 211, 1167-1183.	8. 5	112
31	The cytoplasmic domain of neuropilinâ€1 regulates focal adhesion turnover. FEBS Letters, 2013, 587, 3392-3399.	2.8	16
32	The Neuropilin 1 Cytoplasmic Domain Is Required for VEGF-A-Dependent Arteriogenesis. Developmental Cell, 2013, 25, 156-168.	7.0	184
33	The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nature Protocols, 2013, 8, 418-429.	12.0	88
34	NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood, 2013, 121, 2352-2362.	1.4	142
35	Neuropilin Signalling in Vascular Development and Pathology. Current Angiogenesis, 2012, 1, 125-132.	0.1	2
36	Novel Mechanisms in Vascular Permeability. FASEB Journal, 2012, 26, 79.2.	0.5	0

3

ALESSANDRO FANTIN

#	Article	IF	CITATIONS
37	The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development (Cambridge), 2011, 138, 4185-4191.	2.5	104
38	Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 2010, 116, 829-840.	1.4	932
39	Recombinant C1 inhibitor in brain ischemic injury. Annals of Neurology, 2009, 66, 332-342.	5.3	107
40	03-P064 Macrophages promote vascularisation of the developing brain. Mechanisms of Development, 2009, 126, S85.	1.7	0
41	Neuropilin ligands in vascular and neuronal patterning. Biochemical Society Transactions, 2009, 37, 1228-1232.	3.4	58