Edgardo T Farinas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5036048/publications.pdf

Version: 2024-02-01

25 1,167 14 22
papers citations h-index g-index

26 26 26 1193 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synergistic Effects of Microwave Radiation and Nanocarbon Immobilized Membranes in the Generation of Bacteria-Free Water via Membrane Distillation. Industrial & Engineering Chemistry Research, 2022, 61, 1453-1463.	3.7	10
2	Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition. Reactions, 2022, 3, 139-159.	2.1	2
3	Laccase and Its Mutant Displayed on the Bacillus subtilis Spore Coat for Oxidation of Phenolic Compounds in Organic Solvents. Catalysts, 2021, 11, 606.	3.5	6
4	Engineering 2―oxoglutarate dehydrogenase to a 2â€oxo aliphatic dehydrogenase complex by optimizing consecutive components. AICHE Journal, 2020, 66, e16769.	3.6	4
5	Catalysis of transthiolacylation in the active centers of dihydrolipoamide acyltransacetylase components of 2â€oxo acid dehydrogenase complexes. FEBS Open Bio, 2018, 8, 880-896.	2.3	9
6	Engineering CotA Laccase for Acidic pH Stability Using Bacillus subtilis Spore Display. Journal of Microbiology and Biotechnology, 2017, 27, 507-513.	2.1	12
7	<i>Bacillus subtilis</i> Spore Display of Laccase for Evolution under Extreme Conditions of High Concentrations of Organic Solvent. ACS Combinatorial Science, 2014, 16, 665-669.	3.8	16
8	Investigation of the donor and acceptor range for chiral carboligation catalyzed by the E1 component of the 2-oxoglutarate dehydrogenase complex. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 42-45.	1.8	3
9	Assignment of Function to Histidines 260 and 298 by Engineering the E1 Component of the <i>Escherichia coli</i> 2-Oxoglutarate Dehydrogenase Complex; Substitutions That Lead to Acceptance of Substrates Lacking the 5-Carboxyl Group. Biochemistry, 2011, 50, 7705-7709.	2.5	23
10	Laboratory evolution of laccase for substrate specificity. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 230-234.	1.8	45
11	Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Engineering, Design and Selection, 2010, 23, 679-682.	2.1	68
12	Laboratory Evolution of Laccase for Substrate Specificity. FASEB Journal, 2010, 24, 645.3.	0.5	0
13	Altering the substrate specificity of the Escherichia coli E1 Component of the 2â€Oxoglutarate Dehydrogenase Multienzyme Complex. FASEB Journal, 2010, 24, 645.6.	0.5	O
14	Narrowing Laccase Substrate Specificity Using Active Site Saturation Mutagenesis. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 269-274.	1,1	21
15	Meet the Guest Editor. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 329-329.	1.1	O
16	Fluorescence Activated Cell Sorting for Enzymatic Activity. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 321-328.	1.1	19
17	Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3. Tetrahedron, 2004, 60, 525-528.	1.9	106
18	Colorimetric High-Throughput Assay for Alkene Epoxidation Catalyzed by Cytochrome P450 BM-3 Variant 139-3. Journal of Biomolecular Screening, 2004, 9, 141-146.	2.6	53

#	Article	IF	CITATION
19	Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nature Biotechnology, 2002, 20, 1135-1139.	17.5	379
20	Directed enzyme evolution. Current Opinion in Biotechnology, 2001, 12, 545-551.	6.6	252
21	Cost-Effective Whole-Cell Assay for Laboratory Evolution of Hydroxylases in Escherichia coli. Journal of Biomolecular Screening, 2001, 6, 111-117.	2.6	45
22	Photoinduced DNA Cleavage Reactions by Designed Analogues of Co(III)â^Bleomycin:Â The Metalated Core Is the Primary Determinant of Sequence Specificity. Inorganic Chemistry, 1996, 35, 2637-2643.	4.0	29
23	Syntheses, structures and reactivities of designed analogues of cobalt(III)-bleomycinsz: Insight into the mechanism of sequence-specific DNA cleavage upon illumination. Journal of Chemical Sciences, 1995, 107, 459-476.	1.5	1
24	NMR Evidence of Sequence Specific DNA Binding by a Cobalt(III)-Bleomycin Analog with Tethered Acridine. Inorganic Chemistry, 1994, 33, 4295-4308.	4.0	22
25	A designed synthetic analog of cobalt(III)-bleomycin with enhanced DNA-binding and photocleaving activity. Journal of the American Chemical Society, 1993, 115, 2996-2997.	13.7	42