Yukari Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5035433/publications.pdf

Version: 2024-02-01

82	3,020	32	54
papers	citations	h-index	g-index
83	83	83	2433
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical characteristics of a gold electrode modified with a self-assembled monolayer of ferrocenylalkanethiols. Langmuir, 1991, 7, 1510-1514.	3.5	318
2	In situ and dynamic monitoring of the self-assembling and redox processes of a ferrocenylundecanethiol monolayer by electrochemical quartz crystal microbalance. Langmuir, 1992, 8, 1385-1387.	3.5	180
3	Electrochemical Performance of Angstrom Level Flat Sputtered Carbon Film Consisting of sp2and sp3Mixed Bonds. Journal of the American Chemical Society, 2006, 128, 7144-7145.	13.7	170
4	On-Chip Enzyme Immunoassay of a Cardiac Marker Using a Microfluidic Device Combined with a Portable Surface Plasmon Resonance System. Analytical Chemistry, 2006, 78, 5525-5531.	6.5	156
5	Electrochemical and electrogenerated chemiluminescence properties of tris(2,2′-bipyridine)ruthenium(II)-tridecanethiol derivative on ITO and gold electrodes. Journal of Electroanalytical Chemistry, 1995, 384, 57-66.	3.8	107
6	Electrochemical properties of the 2-mercaptohydroquinone monolayer on a gold electrode. Effect of solution pH, adsorption time and concentration of the modifying solution. Journal of Electroanalytical Chemistry, 1996, 409, 145-154.	3.8	105
7	Structure and Electrochemical Properties of Carbon Films Prepared by a Electron Cyclotron Resonance Sputtering Method. Analytical Chemistry, 2007, 79, 98-105.	6.5	93
8	Electrochemical quartz crystal microbalance studies of self-assembled monolayers of 11-ferrocenyl-1-undecanethiol: Structure-dependent ion-pairing and solvent uptake. Journal of Electroanalytical Chemistry, 1994, 372, 117-124.	3.8	84
9	In situ STM imaging of individual molecules in two-component self-assembled monolayers of 3-mercaptopropionic acid and 1 -decanethiol on Au(111). Journal of Electroanalytical Chemistry, 2001, 496, 50-60.	3.8	77
10	Glucose oxidase/polyion complex-bilayer membrane for elimination of electroactive interferents in amperometric glucose sensor. Analytica Chimica Acta, 1998, 364, 173-179.	5.4	72
11	Unidirectional Electron Transfer at Self-Assembled Monolayers of 11-Ferrocenyl-1-undecanethiol on Gold. Bulletin of the Chemical Society of Japan, 1993, 66, 1032-1037.	3.2	69
12	Coverage dependent behavior of redox reaction induced structure change and mass transport at an 11 -ferrocenyl-1-undecanethiol self-assembled monolayer on a gold electrode studied by an in situ IRRAS \hat{a} e"EQCM combined system. Physical Chemistry Chemical Physics, 1999, 1, 3653-3659.	2.8	68
13	Electrochemical in situ FT-IRRAS studies of a self-assembled monolayer of 2-(11-mercaptoundecyl)hydroquinone. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3813.	1.7	67
14	High-throughput flow-injection analysis of glucose and glutamate in food and biological samples by using enzyme/polyion complex-bilayer membrane-based electrodes as the detectors. Biosensors and Bioelectronics, 1998, 13, 809-815.	10.1	65
15	Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly(vinyl alcohol)/polyion complex-bilayer membrane. Electrochimica Acta, 2000, 45, 2945-2952.	5 . 2	64
16	Rapid measurement of transaminase activities using an amperometric l-glutamate-sensing electrode based on a glutamate oxidase–polyion complex-bilayer membrane. Sensors and Actuators B: Chemical, 1998, 52, 23-29.	7.8	61
17	Electrochemical Enzyme Immunoassay of a Peptide Hormone at Picomolar Levels. Analytical Chemistry, 2005, 77, 4235-4240.	6.5	53
18	Electrochemical responses of cytochrome c on a gold electrode modified with mixed monolayers of 3-mercaptopropionic acid and n-alkanethiol. Journal of Electroanalytical Chemistry, 1997, 438, 99-104.	3.8	50

#	Article	IF	CITATIONS
19	Formation and characterization of aromatic selenol and thiol monolayers on gold: in-situ IR studies and electrochemical measurements. Physical Chemistry Chemical Physics, 2004, 6, 1328.	2.8	50
20	Electrochemically amplified detection for lipopolysaccharide using ferrocenylboronic acid. Biosensors and Bioelectronics, 2007, 22, 1527-1531.	10.1	44
21	Surface Modification of GC and HOPG with Diazonium, Amine, Azide, and Olefin Derivatives. Langmuir, 2011, 27, 170-178.	3.5	44
22	Enzyme Ultra-thin Layer Electrode Prepared by the Co-adsorption of Poly-L-lysine and Glucose Oxidase onto a Mercaptopropionic Acid-Modified Gold Surface. Chemistry Letters, 1996, 25, 251-252.	1.3	41
23	In Situ Surface-Enhanced Infrared Study of Hydrogen Bond Pairing of Complementary Nucleic Acid Bases at the Electrochemical Interface. Analytical Chemistry, 2004, 76, 5564-5569.	6.5	40
24	Amperometric Determination of Acetic Acid with a Trienzyme/Poly(dimethylsiloxane)-Bilayer-Based Sensor. Analytical Chemistry, 2001, 73, 5738-5742.	6.5	39
25	Rapid and highly-sensitive determination of acetylcholinesterase activity based on the potential-dependent adsorption of thiocholine on silver electrodes. Sensors and Actuators B: Chemical, 2003, 91, 148-151.	7.8	38
26	Electrochemical responses of cytochrome c on gold electrodes modified with nucleic acid base derivatives–electrochemical and quartz crystal microbalance studies. Electrochimica Acta, 2000, 45, 2869-2875.	5.2	37
27	Use of a siloxane polymer for the preparation of amperometric sensors: O2 and NO sensors and enzyme sensors. Sensors and Actuators B: Chemical, 2001, 76, 489-493.	7.8	37
28	Ordered structures of self-assembled monolayers of 3-mercaptopropionic acid on Au(111): in situ scanning tunneling microscopy study. Physical Chemistry Chemical Physics, 2001, 3, 3399-3404.	2.8	34
29	Efficient synthesis of ω-mercaptoalkyl 1,2-trans-glycosides from sugar peracetates. Carbohydrate Research, 2007, 342, 1009-1020.	2.3	34
30	Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer. Biosensors and Bioelectronics, 1997, 12, 321-328.	10.1	33
31	In situ scanning tunneling microscopy observation of self-assembled monolayers of 3-mercaptopropionic acid on $Au(111)$ in perchloric acid solution. Journal of Electroanalytical Chemistry, 2001, 507, 256-262.	3.8	33
32	Enzyme electrodes based on self-assembled monolayers of thiol compounds on gold. Electrochimica Acta, 1999, 44, 3833-3838.	5. 2	32
33	Determination of Real Composition of 3-Mercaptopropionic Acid and 1-Octadecanethiol Mixed Self-Assembled Monolayers by Using Electrochemical and Electrochemical Quartz Crystal Microbalance Measurements. Electroanalysis, 1998, 10, 633-637.	2.9	29
34	Design of Biomolecular Interface for Detecting Carbohydrate and Lectin Weak Interactions. Langmuir, 2012, 28, 1846-1851.	3.5	28
35	Synthesis of phosphorylcholine–oligoethylene glycol–alkane thiols and their suppressive effect on non-specific adsorption of proteins. Tetrahedron Letters, 2009, 50, 4092-4095.	1.4	27
36	Stereoselective glycosylations using benzoylated glucosyl halides with inexpensive promoters. Carbohydrate Research, 2008, 343, 1297-1308.	2.3	25

#	Article	IF	CITATIONS
37	Electrochemical behavior of gold electrodes modified with aminopurinethiol derivatives. Journal of Electroanalytical Chemistry, 1999, 473, 99-104.	3.8	24
38	Highly Sensitive Determination of Acetylcholinesterase Activity Based on the Chemisorption/Reductive Desorption-Process of Thiol Compound on a Silver Electrode. Chemistry Letters, 2002, 31, 618-619.	1.3	24
39	Recognition of lectin with a high signal to noise ratio: carbohydrate-tri(ethylene glycol)-alkanethiol co-adsorbed monolayer. Chemical Communications, 2008, , 4909.	4.1	24
40	Interference-free, amperometric measurement of urea in biological samples using an electrode coated with tri-enzyme/polydimethylsiloxane-bilayer membrane. Analytica Chimica Acta, 2001, 441, 175-181.	5.4	23
41	Highly-Sensitive Determination of 6-Mercaptopurine and Its Metabolites by Electrochemical Reductive Desorption Measurements. Electroanalysis, 2005, 17, 965-968.	2.9	22
42	12-Mercaptododecyl \hat{l}^2 -maltoside-modified gold nanoparticles: specific ligands for concanavalin A having long flexible hydrocarbon chains. Analytical and Bioanalytical Chemistry, 2008, 391, 2527-2532.	3.7	22
43	One-Step Detection of Galectins on Hybrid Monolayer Surface with Protruding Lactoside. Analytical Chemistry, 2010, 82, 1175-1178.	6.5	22
44	Mediatorless Superoxide Dismutase Sensors Using Cytochrome c-Modified Electrodes: Xanthine Oxidase Incorporated Polyion Complex Membrane for Enhanced Activity and In Vivo Analysis. Electroanalysis, 2001, 13, 397-403.	2.9	21
45	Redox-Flow Battery Operating in Neutral and Acidic Environments with Multielectron-Transfer-Type Viologen Molecular Assembly. ACS Applied Energy Materials, 2020, 3, 4377-4383.	5.1	21
46	Surface electrochemical enzyme immunoassay for the highly sensitive measurement of B-type natriureric peptide. Sensors and Actuators B: Chemical, 2005, 108, 603-607.	7.8	19
47	Rapid and accurate determination of NADH by an amperometric sensor with a bilayer membrane consisting of a polyion complex layer and an NADH oxidase layer. Sensors and Actuators B: Chemical, 2000, 65, 46-48.	7.8	17
48	Amperometric measurement of ds-DNA content using a peroxidase-modified electrode. Bioelectrochemistry, 2004, 63, 257-259.	4.6	17
49	Potential-dependent chemiluminescence of luminol on the gold electrode modified with ferrocenylalkanethiol self-assembled monolayer. Electrochemistry Communications, 2001, 3, 131-135.	4.7	16
50	Suppression of Non-specific Adsorption Using Densified Tri(ethylene glycol) alkanethiols: Monolayer Characteristics Evaluated by Electrochemical Measurements. Analytical Sciences, 2010, 26, 33-37.	1.6	15
51	Formation of Molecularly Ordered Domain of 1-Decanethiol in the Mixed Self-Assembled Monolayer with Bis(4-pyridyl)disulfide - A Scanning Tunneling Microscopy Observation. Chemistry Letters, 1997, 26, 987-988.	1.3	14
52	Simultaneous determination of glucose and ascorbic acid by using gold electrode modified with ferrocenylundecanethiol monolayer. Sensors and Actuators B: Chemical, 2005, 108, 617-621.	7.8	14
53	<i>In situ</i> STM Imaging of Two-Component Self-Assembled Monolayers of 1-Decanethiol and 3-Mercaptopropionic Acid on Au(111). Electrochemistry, 1999, 67, 1178-1180.	1.4	14
54	Mass transport accompanied with electron transfer between the gold electrode modified with 11-ferrocenylundecanethiol monolayer and redox species in solution — an electrochemical quartz crystal microbalance study. Journal of Electroanalytical Chemistry, 1997, 434, 115-119.	3.8	13

#	Article	IF	CITATIONS
55	Immobilization of polyglutamate-glucose oxidase onto a cysteamine-modified gold electrode. Sensors and Actuators B: Chemical, 2003, 91, 187-190.	7.8	13
56	Novel stereocontrolled amidoglycosylation of alcohols with acetylated glycals and sulfamate ester. RSC Advances, 2014, 4, 21584-21587.	3.6	13
57	Hydrogen bonding interaction between aminopurinethiol-monolayers and oligonucleotides by QCM and XPS measurements. Sensors and Actuators B: Chemical, 2007, 121, 214-218.	7.8	12
58	Surface modification of thin polyion complex film for surface plasmon resonance immunosensor. Sensors and Actuators B: Chemical, 2008, 130, 320-325.	7.8	12
59	Electrochemical and Electrogenerated Chemiluminescence Properties of a Tris (bipyridyl) ruthenium(II)-Alkanethiol Derivative on ITO and Gold Electrodes. Electrochemistry, 1993, 61, 816-817.	0.3	12
60	Adsorption Properties and Activities of Lipase on a Gold Substrate Modified by Self-assembled Monolayers. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2392-2396.	1.3	11
61	Electrochemiluminescence of Luminol Generated at Self-Assembled Monolayer of Ferrocenylalkanethiol on Gold Electrode. Chemistry Letters, 2000, 29, 1330-1331.	1.3	10
62	Surface Modification of Thin Polyion Complex Film with a High Specific Binding Affinity and Prevention of Non-specific Adsorption in Surface Plasmon Resonance Immunoassay. Electrochemistry, 2006, 74, 121-124.	1.4	10
63	Synthesis and galectin-binding activities of mercaptododecyl glycosides containing a terminal \hat{l}^2 -galactosyl group. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1265-1269.	2.2	9
64	Amperometric L-Lactate-Sensing Electrode Using an Enzyme Ultra-thin Layer Produced through the Co-adsorption of Poly-L-Lysine and Lactate Oxidase onto Mercaptoalkanoic Acid-Modified Gold Surface. Electrochemistry, 1996, 64, 1266-1268.	0.3	9
65	Cytochrome c-552 from gram-negative alkaliphilic Pseudomonas alcaliphila AL15-21T alters the redox properties at high pH. Journal of Bioscience and Bioengineering, 2007, 103, 247-254.	2.2	8
66	Electrochemical Responses of Cytochrome c on Gold Electrode Modified with Bis (4-pyridyl) Disulfide/n-Alkanethiol Mixed Monolayers. Electrochemistry, 1995, 63, 1173-1178.	0.3	8
67	Amperometric Biosensors Using an Enzyme-Containing Polyion Complex. ACS Symposium Series, 1998, , 46-56.	0.5	6
68	Surface Plasmon Resonance Analysis of Interactions between Diacylglycerol Acyltransferase and Its Interacting Molecules. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1135-1139.	1.3	6
69	Enzyme electrode response in solution containing enzyme substrate and species that associates with the substrate. Sensors and Actuators B: Chemical, 2005, 108, 613-616.	7.8	5
70	<i>In Situ</i> STM Observation of Self-assembled Monolayers of 2-Amino-6-purinethiol on Au(111) Electrodes. Electrochemistry, 2001, 69, 962-965.	1.4	5
71	Recent Development of Carbon-based Electrode for Vanadium Redox Flow Battery. Electrochemistry, 2020, 88, 344-346.	1.4	5
72	Highly-sensitive Biosensors with Chemically-amplified Responses. Electrochemistry, 2008, 76, 515-521.	1.4	4

#	Article	IF	CITATIONS
73	Bifunctional Tri(ethylene glycol) Alkanethiol Monolayer Modified Gold Electrode for On-Chip Electrochemical Immunoassay of pg Level Leptin. Analytical Sciences, 2011, 27, 465-469.	1.6	3
74	Adsorptive Stripping Voltammetric Measurement of Acetylcholinesterase Activity: Application to Monitoring Organophosphorus Pesticides. Electrochemistry, 2003, 71, 411-413.	1.4	3
75	Electrochemical Chemiluminescence Responses on Gold Electrodes Modified with Ferrocenylundecanethiol Monolayer and Poly(divinylferrocene) Film. Electrochemistry, 2006, 74, 202-204.	1.4	2
76	Convenient stereocontrolled amidoglycosylation of alcohols with acetylated glycals and trichloroethoxysulfonamide. Carbohydrate Research, 2016, 434, 121-131.	2.3	2
77	Detection of l-lactic Acid using Electrochemically-Controllable Chemiluminescence System. Electrochemistry, 2001, 69, 1017-1019.	1.4	2
78	Surface-Electrochemical Sensor for the Measurement of Anti-Cholinesterase Activity IEEJ Transactions on Sensors and Micromachines, 2003, 123, 128-129.	0.1	2
79	Measurement of DNA Amount on Gold Plate Based on the Oxidation Current of Guanine. Bunseki Kagaku, 2006, 55, 975-978.	0.2	1
80	Application of highâ€performance hydrocarbonâ€type sulfonated polyethersulfone for vanadium redoxâ€flow battery. International Journal of Energy Research, 2021, 45, 19405-19412.	4.5	1
81	Thick-matrix-free interface for highly effective protein detection and sufficient signal enhancement. Composite Interfaces, 2014, 21, 631-638.	2.3	0
82	Bio- and Chemical Sensors and Role of Soft Interface. , 2019, , 181-198.		0