
Alan Cartmell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5034802/publications.pdf Version: 2024-02-01

ALAN CARTMELL

#	Article	IF	CITATIONS
1	Exploration of expanded carbohydrate chemical space to access biological activity using microwave-induced acid condensation of simple sugars. RSC Advances, 2022, 12, 11075-11083.	3.6	1
2	Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nature Chemical Biology, 2022, 18, 841-849.	8.0	16
3	Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nature Communications, 2021, 12, 44.	12.8	42
4	Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity. Biochemical Journal, 2021, 478, 735-748.	3.7	6
5	A single sulfatase is required to access colonic mucin by a gut bacterium. Nature, 2021, 598, 332-337.	27.8	87
6	Correction: Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity. Biochemical Journal, 2021, 478, 2537-2538.	3.7	0
7	Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nature Communications, 2020, 11, 646.	12.8	58
8	Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan II. Journal of Biological Chemistry, 2019, 294, 7711-7721.	3.4	12
9	Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 2018, 3, 210-219.	13.3	263
10	The human gut microbe Bacteroides thetaiotaomicron encodes the founding member of a novel glycosaminoglycan-degrading polysaccharide lyase family PL29. Journal of Biological Chemistry, 2018, 293, 17906-17916.	3.4	30
11	A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 2018, 3, 1314-1326.	13.3	103
12	Structural studies of the unusual metal-ion site of the CH124 endoglucanase from <i>Ruminiclostridium thermocellum</i> . Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 496-505.	0.8	3
13	Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proceedings of the United States of America, 2017, 114, 4936-4941.	7.1	38
14	An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. Journal of Biological Chemistry, 2017, 292, 13271-13283.	3.4	26
15	Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 2017, 544, 65-70.	27.8	447
16	How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7037-7042.	7.1	99
17	Evidence for a Boat Conformation at the Transition State of GH76 αâ€1,6â€Mannanases—Key Enzymes in Bacterial and Fungal Mannoprotein Metabolism. Angewandte Chemie - International Edition, 2015, 54, 5378-5382.	13.8	40
18	Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature, 2015, 517, 165-169.	27.8	427

ALAN CARTMELL

#	Article	IF	CITATIONS
19	Recognition of xyloglucan by the crystalline celluloseâ€binding site of a family 3a carbohydrateâ€binding module. FEBS Letters, 2015, 589, 2297-2303.	2.8	46
20	Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5237-5242.	7.1	88
21	The Structure and Function of an Arabinan-specific α-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases. Journal of Biological Chemistry, 2011, 286, 15483-15495.	3.4	85
22	Probing the β-1,3:1,4 glucanase, CtLic26A, with a thio-oligosaccharide and enzyme variants. Organic and Biomolecular Chemistry, 2008, 6, 851.	2.8	5
23	The Cellvibrio japonicus Mannanase CjMan26C Displays a Unique exo-Mode of Action That Is Conferred by Subtle Changes to the Distal Region of the Active Site. Journal of Biological Chemistry, 2008, 283, 34403-34413.	3.4	74