
Korbinian Schneeberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5034695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nature Genetics, 2022, 54, 342-348.	21.4	87
2	plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics, 2022, 38, 2922-2926.	4.1	69
3	The megabase-scale crossover landscape is largely independent of sequence divergence. Nature Communications, 2022, 13, .	12.8	25
4	The Evolutionary Dynamics of Genetic Incompatibilities Introduced by Duplicated Genes in <i>Arabidopsis thaliana</i> . Molecular Biology and Evolution, 2021, 38, 1225-1240.	8.9	11
5	A misâ€regulated cyclic nucleotideâ€gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytologist, 2021, 230, 1078-1094.	7.3	51
6	Natural variation identifies a <i>Pxy</i> gene controlling vascular organisation and formation of nodules and lateral roots in <i>Lotus japonicus</i> . New Phytologist, 2021, 230, 2459-2473.	7.3	7
7	Using the longest run subsequence problem within homology-based scaffolding. Algorithms for Molecular Biology, 2021, 16, 11.	1.2	1
8	Transposition and duplication of MADS-domain transcription factor genes in annual and perennial <i>Arabis</i> species modulates flowering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
9	Anno genominis XX: 20 years of Arabidopsis genomics. Plant Cell, 2021, 33, 832-845.	6.6	11
10	Genetic and Molecular Analysis of Root Hair Development in Arabis alpina. Frontiers in Plant Science, 2021, 12, 767772.	3.6	2
11	The genetic and epigenetic landscape of the <i>Arabidopsis</i> centromeres. Science, 2021, 374, eabi7489.	12.6	188
12	Mutations in the miR396 binding site of the growthâ€regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine. Plant Journal, 2020, 101, 1234-1248.	5.7	19
13	Bacterial Infection Disrupts Clock Gene Expression to Attenuate Immune Responses. Current Biology, 2020, 30, 1740-1747.e6.	3.9	20
14	Mutagenesis of a Quintuple Mutant Impaired in Environmental Responses Reveals Roles for <i>CHROMATIN REMODELING4</i> in the Arabidopsis Floral Transition. Plant Cell, 2020, 32, 1479-1500.	6.6	17
15	Extreme genetic signatures of local adaptation during Lotus japonicus colonization of Japan. Nature Communications, 2020, 11, 253.	12.8	30
16	Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nature Communications, 2020, 11, 989.	12.8	162
17	Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 2020, 6, 13-21.	9.3	40
18	Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biology, 2020, 21, 306.	8.8	44

#	Article	IF	CITATIONS
19	Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nature Plants, 2019, 5, 846-855.	9.3	48
20	Strengths and potential pitfalls of hay transfer for ecological restoration revealed by RADâ€seq analysis in floodplain <i>Arabis</i> species. Molecular Ecology, 2019, 28, 3887-3901.	3.9	14
21	Linked-read sequencing of gametes allows efficient genome-wide analysis of meiotic recombination. Nature Communications, 2019, 10, 4310.	12.8	41
22	Genetic and molecular analysis of trichome development in <i>Arabis alpina</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12078-12083.	7.1	28
23	SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 2019, 20, 277.	8.8	310
24	The Striking Flower-in-Flower Phenotype of Arabidopsis thaliana Nossen (No-0) is Caused by a Novel LEAFY Allele. Plants, 2019, 8, 599.	3.5	4
25	Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1. Current Biology, 2018, 28, 303-310.e3.	3.9	158
26	<i>findGSE</i> : estimating genome size variation within human and <i>Arabidopsis</i> using <i>k</i> -mer frequencies. Bioinformatics, 2018, 34, 550-557.	4.1	167
27	Technical Note on the quality of DNA sequencing for the molecular characterisation of genetically modified plants. EFSA Journal, 2018, 16, e05345.	1.8	23
28	The U1 snRNP Subunit LUC7 Modulates Plant Development and Stress Responses via Regulation of Alternative Splicing. Plant Cell, 2018, 30, 2838-2854.	6.6	48
29	The impact of third generation genomic technologies on plant genome assembly. Current Opinion in Plant Biology, 2017, 36, 64-70.	7.1	201
30	Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Research, 2017, 27, 778-786.	5.5	155
31	Ctf4-related protein recruits LHP1-PRC2 to maintain H3K27me3 levels in dividing cells in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4833-4838.	7.1	36
32	Editorial overview: Genome studies and molecular genetics. Current Opinion in Plant Biology, 2017, 36, iv-v.	7.1	0
33	Chlorosis caused by two recessively interacting genes reveals a role of <scp>RNA</scp> helicase in hybrid breakdown in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 91, 251-262.	5.7	24
34	Chromosome-level assembly of <i>Arabidopsis thaliana</i> L <i>er</i> reveals the extent of translocation and inversion polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4052-60.	7.1	176
35	UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis t haliana. Nature Communications, 2016, 7, 13522.	12.8	51
36	On the origin and evolutionary consequences of gene body DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9111-9116.	7.1	260

#	Article	IF	CITATIONS
37	Molecular, genetic and evolutionary analysis of a paracentric inversion in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 159-178.	5.7	81
38	A multi-marker association method for genome-wide association studies without the need for population structure correction. Nature Communications, 2016, 7, 13299.	12.8	35
39	Plant genic methylation: Conserved for 400 million years. Nature Plants, 2016, 2, 16003.	9.3	0
40	Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes. Plant Cell, 2016, 28, 87-101.	6.6	67
41	Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genetics, 2016, 12, e1005990.	3.5	38
42	cDNA Library Enrichment of Full Length Transcripts for SMRT Long Read Sequencing. PLoS ONE, 2016, 11, e0157779.	2.5	51
43	Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 2015, 1, 14023.	9.3	156
44	Improving the Annotation of Arabidopsis lyrata Using RNA-Seq Data. PLoS ONE, 2015, 10, e0137391.	2.5	82
45	Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 2015, 350, 1521-1524.	12.6	191
46	Mutations in the <i>EDR1</i> Gene Alter the Response of <i>Arabidopsis thaliana</i> to <i>Phytophthora infestans</i> and the Bacterial PAMPs flg22 and elf18. Molecular Plant-Microbe Interactions, 2015, 28, 122-133.	2.6	12
47	Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways. Plant Physiology, 2015, 168, 814-827.	4.8	71
48	Century-scale Methylome Stability in a Recently Diverged Arabidopsis thaliana Lineage. PLoS Genetics, 2015, 11, e1004920.	3.5	148
49	Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biology, 2015, 16, 31.	8.8	150
50	Rapid and Inexpensive Whole-Genome Genotyping-by-Sequencing for Crossover Localization and Fine-Scale Genetic Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 385-398.	1.8	122
51	Floral induction in Arabidopsis thaliana by FLOWERING LOCUS T requires direct repression of BLADE-ON-PETIOLE genes by homeodomain protein PENNYWISE. Plant Physiology, 2015, 169, pp.00960.2015.	4.8	51
52	SHOREmap v3.0: Fast and Accurate Identification of Causal Mutations from Forward Genetic Screens. Methods in Molecular Biology, 2015, 1284, 381-395.	0.9	51
53	Kicking against the PRCs – A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2. PLoS Genetics, 2015, 11, e1005660.	3.5	68
54	The DET1-COP1-HY5 Pathway Constitutes a Multipurpose Signaling Module Regulating Plant Photomorphogenesis and Thermomorphogenesis. Cell Reports, 2014, 9, 1983-1989.	6.4	166

#	Article	IF	CITATIONS
55	CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nature Communications, 2014, 5, 4276.	12.8	69
56	A SHIFT FROM MAGNITUDE TO SIGN EPISTASIS DURING ADAPTIVE EVOLUTION OF A BACTERIAL SOCIAL TRAIT. Evolution; International Journal of Organic Evolution, 2014, 68, 2701-2708.	2.3	14
57	Mapping-by-Sequencing Identifies <i>HvPHYTOCHROME C</i> as a Candidate Gene for the <i>early maturity 5</i> Locus Modulating the Circadian Clock and Photoperiodic Flowering in Barley. Genetics, 2014, 198, 383-396.	2.9	102
58	Rapid Identification of a Natural Knockout Allele of ARMADILLO REPEAT-CONTAINING KINESIN1 That Causes Root Hair Branching by Mapping-By-Sequencing Â. Plant Physiology, 2014, 166, 1280-1287.	4.8	12
59	<i>Arabidopsis thaliana</i> RNase H2 Deficiency Counteracts the Needs for the WEE1 Checkpoint Kinase but Triggers Genome Instability Â. Plant Cell, 2014, 26, 3680-3692.	6.6	33
60	Towards the discovery of novel genetic component involved in stress resistance in A rabidopsis thaliana. New Phytologist, 2014, 201, 810-824.	7.3	12
61	Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nature Reviews Genetics, 2014, 15, 662-676.	16.3	219
62	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391
63	Functional dissection of the <scp> <i>PROPEP2 </i> </scp> and <scp> <i>PROPEP3 </i> </scp> promoters reveals the importance of <scp>WRKY </scp> factors in mediating microbeâ€associated molecular patternâ€induced expression. New Phytologist, 2013, 198, 1165-1177.	7.3	56
64	Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2655-62.	7.1	325
65	Mechanisms of Age-Dependent Response to Winter Temperature in Perennial Flowering of <i>Arabis alpina</i> . Science, 2013, 340, 1094-1097.	12.6	207
66	Impaired sterol ester synthesis alters the response of <i>Arabidopsis thaliana</i> to <i>Phytophthora infestans</i> . Plant Journal, 2013, 73, 456-468.	5.7	62
67	Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology, 2013, 31, 325-330.	17.5	149
68	<scp>RACK</scp> 1 scaffold proteins influence mi <scp>RNA</scp> abundance in Arabidopsis. Plant Journal, 2013, 76, 433-445.	5.7	85
69	User guide for mapping-by-sequencing in Arabidopsis. Genome Biology, 2013, 14, R61.	8.8	138
70	The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. ELife, 2013, 2, e01426.	6.0	197
71	Fast Isogenic Mapping-by-Sequencing of Ethyl Methanesulfonate-Induced Mutant Bulks Â. Plant Physiology, 2012, 160, 591-600.	4.8	119
72	Natural Variation in Biogenesis Efficiency of Individual Arabidopsis thaliana MicroRNAs. Current Biology, 2012, 22, 166-170.	3.9	42

#	Article	IF	CITATIONS
73	FITNESS OF ARABIDOPSIS THALIANA MUTATION ACCUMULATION LINES WHOSE SPONTANEOUS MUTATIONS ARE KNOWN. Evolution; International Journal of Organic Evolution, 2012, 66, 2335-2339.	2.3	46
74	Syntenyâ€based mappingâ€byâ€sequencing enabled by targeted enrichment. Plant Journal, 2012, 71, 517-526.	5.7	43
75	Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 2011, 43, 956-963.	21.4	910
76	Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Science, 2011, 16, 282-288.	8.8	216
77	LOCAS – A Low Coverage Assembly Tool for Resequencing Projects. PLoS ONE, 2011, 6, e23455.	2.5	20
78	The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.	21.4	814
79	Reference-guided assembly of four diverse <i>Arabidopsis thaliana</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10249-10254.	7.1	237
80	Genome-Wide Comparison of Nucleotide-Binding Site-Leucine-Rich Repeat-Encoding Genes in <i>Arabidopsis</i> Â Â Â. Plant Physiology, 2011, 157, 757-769.	4.8	175
81	Structure Determinants for Accurate Processing of miR172a in Arabidopsis thaliana. Current Biology, 2010, 20, 42-48.	3.9	146
82	Arabidopsis thaliana Leaf Form Evolved via Loss of KNOX Expression in Leaves in Association with a Selective Sweep. Current Biology, 2010, 20, 2223-2228.	3.9	88
83	Identification of a Spontaneous Frame Shift Mutation in a Nonreference Arabidopsis Accession Using Whole Genome Sequencing. Plant Physiology, 2010, 153, 652-654.	4.8	39
84	The Rate and Molecular Spectrum of Spontaneous Mutations in <i>Arabidopsis thaliana</i> . Science, 2010, 327, 92-94.	12.6	1,004
85	Deep sequencing to reveal new variants in pooled DNA samples. Human Mutation, 2009, 30, 1703-1712.	2.5	71
86	Selective epigenetic control of retrotransposition in Arabidopsis. Nature, 2009, 461, 427-430.	27.8	315
87	SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 2009, 6, 550-551.	19.0	558
88	A Genetic Defect Caused by a Triplet Repeat Expansion in <i>Arabidopsis thaliana</i> . Science, 2009, 323, 1060-1063.	12.6	75
89	Simultaneous alignment of short reads against multiple genomes. Genome Biology, 2009, 10, R98.	9.6	215
90	Optimal spliced alignments of short sequence reads. Bioinformatics, 2008, 24, i174-i180.	4.1	86

#	Article	IF	CITATIONS
91	Detecting polymorphic regions in <i>Arabidopsis thaliana</i> with resequencing microarrays. Genome Research, 2008, 18, 918-929.	5.5	50
92	Evolution of <i>Arabidopsis thaliana</i> microRNAs from random sequences. Rna, 2008, 14, 2455-2459.	3.5	133
93	Sequencing of natural strains of <i>Arabidopsis thaliana</i> with short reads. Genome Research, 2008, 18, 2024-2033.	5.5	442
94	RBR: library-less repeat detection for ESTs. Bioinformatics, 2006, 22, 2232-2236.	4.1	19
95	Masking repeats while clustering ESTs. Nucleic Acids Research, 2005, 33, 2176-2180.	14.5	6