Andrei V Krivtsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5034293/publications.pdf

Version: 2024-02-01

59 papers

8,662 citations

33 h-index 54 g-index

65 all docs

65 does citations

65 times ranked 12798 citing authors

#	Article	IF	CITATIONS
1	Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature, 2006, 442, 818-822.	27.8	1,317
2	MLL translocations, histone modifications and leukaemia stem-cell development. Nature Reviews Cancer, 2007, 7, 823-833.	28.4	1,039
3	MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L. Cancer Cell, 2011, 20, 66-78.	16.8	791
4	The Wnt/ \hat{l}^2 -Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML. Science, 2010, 327, 1650-1653.	12.6	675
5	H3K79 Methylation Profiles Define Murine and Human MLL-AF4 Leukemias. Cancer Cell, 2008, 14, 355-368.	16.8	494
6	The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood, 2018, 131, 2661-2669.	1.4	313
7	Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature, 2015, 526, 273-276.	27.8	307
8	Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nature Medicine, 2016, 22, 672-678.	30.7	301
9	Loss of BAP1 function leads to EZH2-dependent transformation. Nature Medicine, 2015, 21, 1344-1349.	30.7	297
10	HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 2009, 113, 2375-2385.	1.4	292
11	A dominant-negative effect drives selection of <i>TP53</i> missense mutations in myeloid malignancies. Science, 2019, 365, 599-604.	12.6	265
12	A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. Cancer Cell, 2019, 36, 660-673.e11.	16.8	231
13	DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nature Medicine, 2016, 22, 1488-1495.	30.7	195
14	A UTX-MLL4-p300 Transcriptional Regulatory Network Coordinately Shapes Active Enhancer Landscapes for Eliciting Transcription. Molecular Cell, 2017, 67, 308-321.e6.	9.7	172
15	TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nature Genetics, 2018, 50, 83-95.	21.4	156
16	AF10 Regulates Progressive H3K79 Methylation and HOX Gene Expression in Diverse AML Subtypes. Cancer Cell, 2014, 26, 896-908.	16.8	153
17	Therapeutic targeting of preleukemia cells in a mouse model of <i>NPM1</i> mutant acute myeloid leukemia. Science, 2020, 367, 586-590.	12.6	145
18	Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood, 2014, 124, 13-23.	1.4	139

#	Article	IF	CITATIONS
19	Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO Journal, 2005, 24, 368-381.	7.8	111
20	SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. Blood, 2017, 130, 2631-2641.	1.4	102
21	Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia. Cell Stem Cell, 2015, 17, 611-623.	11.1	97
22	Both SH2 Domains Are Involved in Interaction of SHP-1 with the Epidermal Growth Factor Receptor but Cannot Confer Receptor-directed Activity to SHP-1/SHP-2 Chimera. Journal of Biological Chemistry, 1997, 272, 5966-5973.	3.4	95
23	LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood, 2018, 131, 1730-1742.	1.4	92
24	EVI1 is critical for the pathogenesis of a subset of MLL-AF9–rearranged AMLs. Blood, 2012, 119, 5838-5849.	1.4	76
25	Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells. Nature Genetics, 2017, 49, 866-875.	21.4	75
26	Peptidomimetic blockade of MYB in acute myeloid leukemia. Nature Communications, 2018, 9, 110.	12.8	68
27	IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell, 2019, 24, 153-165.e7.	11.1	66
28	MEF2C Phosphorylation Is Required forÂChemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discovery, 2018, 8, 478-497.	9.4	59
29	Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option for B-ALL. Clinical Cancer Research, 2015, 21, 2348-2358.	7.0	57
30	ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nature Communications, 2017, 8, 15429.	12.8	55
31	Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood, 2009, 113, 3461-3471.	1.4	51
32	Mixed-Lineage Leukemia Fusions and Chromatin in Leukemia. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026658.	6.2	46
33	MLL partial tandem duplication leukemia cells are sensitive to small molecule DOT1L inhibition. Haematologica, 2015, 100, e190-e193.	3.5	45
34	<i>MLL</i> -Rearranged B Lymphoblastic Leukemias Selectively Express the Immunoregulatory Carbohydrate-Binding Protein Galectin-1. Clinical Cancer Research, 2010, 16, 2122-2130.	7.0	39
35	Myeloid Leukemia Cells With MLL partial Tandem Duplication Are Sensitive To Pharmacological Inhibition Of The H3K79 Methyltransferase DOT1L. Blood, 2013, 122, 1256-1256.	1.4	35
36	A chromatin-independent role of Polycomb-like 1 to stabilize p53 and promote cellular quiescence. Genes and Development, 2015, 29, 2231-2243.	5.9	32

#	Article	IF	Citations
37	The Stem Cell Discovery Engine: an integrated repository and analysis system for cancer stem cell comparisons. Nucleic Acids Research, 2012, 40, D984-D991.	14.5	29
38	Novel inhibitors of the histone methyltransferase DOT1L show potent antileukemic activity in patient-derived xenografts. Blood, 2020, 136, 1983-1988.	1.4	25
39	Jediâ€"a novel transmembrane protein expressed in early hematopoietic cells. Journal of Cellular Biochemistry, 2007, 101, 767-784.	2.6	21
40	Transformation from Committed Progenitor to Leukemia Stem Cells. Annals of the New York Academy of Sciences, 2009, 1176, 144-149.	3.8	17
41	Pathprinting: An integrative approach to understand the functional basis of disease. Genome Medicine, 2013, 5, 68.	8.2	13
42	Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras. Blood Advances, 2018, 2, 2478-2490.	5.2	12
43	MOZ and Menin–MLL Complexes Are Complementary Regulators of Chromatin Association and Transcriptional Output in Gastrointestinal Stromal Tumor. Cancer Discovery, 2022, 12, 1804-1823.	9.4	10
44	Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism. Experimental Biology and Medicine, 2022, 247, 958-971.	2.4	9
45	Reply to "Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status". Nature Medicine, 2016, 22, 578-579.	30.7	7
46	Gene Expression Profiling of Leukemia Stem Cells. Methods in Molecular Biology, 2009, 538, 231-246.	0.9	6
47	Cell of Origin Influences Leukemia Stem Cell Phenotype Blood, 2009, 114, 3459-3459.	1.4	6
48	Can One Cell Influence Cancer Heterogeneity?. Science, 2012, 338, 1035-1036.	12.6	3
49	Murine Retrovirallyâ€Transduced Bone Marrow Engraftment Models of MLLâ€Fusionâ€Driven Acute Myelogenous Leukemias (AML). Current Protocols in Pharmacology, 2017, 78, 14.42.1-14.42.19.	4.0	2
50	Patient Derived Xenograft (PDX) Models Faithfully Recapitulate The Genetic Composition Of Primary AML. Blood, 2013, 122, 1328-1328.	1.4	2
51	Regulation Of Normal and Malignant Hoxa Gene Expression Through Higher H3K79 Methylated States. Blood, 2013, 122, 2492-2492.	1.4	2
52	HoxA9 Knockdown Inhibits Proliferation and Induces Cell Death in Human MLL-Rearranged Leukemias Blood, 2006, 108, 734-734.	1.4	2
53	Regulation of HOX gene expression by AF10-mediated conversion of H3K79me1 to H3K79me2. Experimental Hematology, 2014, 42, S30.	0.4	0
54	Induction of Bim Facilitates Apoptosis in Leukemia Cells Treated with HDAC Inhibitors Blood, 2006, 108, 1994-1994.	1.4	0

#	Article	IF	Citations
55	Hoxa9+Meis1a Efficiently Transform Hematopoietic Stem Cells but Not Committed Progenitors Blood, 2007, 110, 3375-3375.	1.4	O
56	Genomic and Proteomic Analysis of Primary Chemoresistance and Induction Failure in Acute Myeloid Leukemia. Blood, 2015, 126, 88-88.	1.4	0
57	Peptidomimetic Blockade of MYB in Acute Myeloid Leukemia. Blood, 2016, 128, 3945-3945.	1.4	O
58	Aberrant Phosphorylation of MEF2C Is Dispensable for Hematopoiesis, and Induces Chemotherapy Resistance and Susceptibility to MARK Kinase Inhibition Therapy in Acute Myeloid Leukemia. Blood, 2016, 128, 436-436.	1.4	0
59	RNA Binding Protein Syncrip Regulates the Leukemia Stem Cell Program. Blood, 2016, 128, 739-739.	1.4	0