Ivan Topisirovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5034196/publications.pdf Version: 2024-02-01

IVAN TODISIDOVIC

#	Article	IF	CITATIONS
1	Regulation of gene expression via translational buffering. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119140.	1.9	22
2	Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metabolism, 2022, 34, 564-580.e8.	7.2	21
3	Mitochondrial complex IV defects induce metabolic and signaling perturbations that expose potential vulnerabilities in HCT116 cells. FEBS Open Bio, 2022, 12, 959-982.	1.0	2
4	Arginylâ€ŧRNAâ€protein transferase 1 (ATE1) promotes melanoma cell growth and migration. FEBS Letters, 2022, 596, 1468-1480.	1.3	1
5	Cancer Plasticity: The Role of mRNA Translation. Trends in Cancer, 2021, 7, 134-145.	3.8	42
6	Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. Journal of Clinical Investigation, 2021, 131, .	3.9	35
7	Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin. Neoplasia, 2021, 23, 391-399.	2.3	18
8	Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Science Advances, 2021, 7, .	4.7	68
9	Cell size homeostasis is maintained by CDK4-dependent activation of p38 MAPK. Developmental Cell, 2021, 56, 1756-1769.e7.	3.1	35
10	Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Nature Chemical Biology, 2021, 17, 1065-1074.	3.9	33
11	STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nature Communications, 2021, 12, 3299.	5.8	24
12	The role of GSK3 in metabolic pathway perturbations in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119059.	1.9	20
13	The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nature Communications, 2021, 12, 4651.	5.8	22
14	A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Molecular Cell, 2021, 81, 3848-3865.e19.	4.5	24
15	Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Molecular Cell, 2021, 81, 4191-4208.e8.	4.5	18
16	The mTORC1/S6K/PDCD4/eIF4A Axis Determines Outcome of Mitotic Arrest. Cell Reports, 2020, 33, 108230.	2.9	17
17	PRDM15 is a key regulator of metabolism critical to sustain B-cell lymphomagenesis. Nature Communications, 2020, 11, 3520.	5.8	20
18	Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nature Communications, 2020, 11, 3701.	5.8	128

#	Article	IF	CITATIONS
19	Genome-Wide Screens Reveal that Resveratrol Induces Replicative Stress in Human Cells. Molecular Cell, 2020, 79, 846-856.e8.	4.5	18
20	Translational control of breast cancer plasticity. Nature Communications, 2020, 11, 2498.	5.8	80
21	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	1.5	13
22	Oncogenic kinases and perturbations in protein synthesis machinery and energetics in neoplasia. Journal of Molecular Endocrinology, 2019, 62, R83-R103.	1.1	9
23	An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis. Nature Communications, 2019, 10, 2901.	5.8	24
24	Translational offsetting as a mode of estrogen receptor αâ€dependent regulation of geneÂexpression. EMBO Journal, 2019, 38, e101323.	3.5	33
25	RITA requires eIF2α-dependent modulation of mRNA translation for its anti-cancer activity. Cell Death and Disease, 2019, 10, 845.	2.7	7
26	c-Myc steers translation in lymphoma. Journal of Experimental Medicine, 2019, 216, 1471-1473.	4.2	4
27	Hepatic posttranscriptional network comprised of CCR4–NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7973-7981.	3.3	21
28	Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Research, 2019, 47, e70-e70.	6.5	70
29	Translational reprogramming marks adaptation to asparagine restriction in cancer. Nature Cell Biology, 2019, 21, 1590-1603.	4.6	61
30	Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PLoS Biology, 2019, 17, e3000535.	2.6	49
31	METTL13 Methylation of eEF1A Increases Translational Output to Promote Tumorigenesis. Cell, 2019, 176, 491-504.e21.	13.5	117
32	mTOR as a central regulator of lifespan and aging. F1000Research, 2019, 8, 998.	0.8	244
33	Downregulation of PERK activity and eIF2α serine 51 phosphorylation by mTOR complex 1 elicits pro-oxidant and pro-death effects in tuberous sclerosis-deficient cells. Cell Death and Disease, 2018, 9, 254.	2.7	10
34	Signaling Pathways Involved in the Regulation of mRNA Translation. Molecular and Cellular Biology, 2018, 38, .	1.1	236
35	Dysregulation of mRNA translation and energy metabolism in cancer. Advances in Biological Regulation, 2018, 67, 30-39.	1.4	35
36	Cross-talk between protein synthesis, energy metabolism and autophagy in cancer. Current Opinion in Genetics and Development, 2018, 48, 104-111.	1.5	92

#	Article	IF	CITATIONS
37	Translation Links Nutrient Availability with Inflammation. Trends in Biochemical Sciences, 2018, 43, 849-852.	3.7	0
38	Translational and HIF-1α-Dependent Metabolic Reprogramming Underpin Metabolic Plasticity and Responses to Kinase Inhibitors and Biguanides. Cell Metabolism, 2018, 28, 817-832.e8.	7.2	61
39	Interplay between ShcA Signaling and PGC-1α Triggers Targetable Metabolic Vulnerabilities in Breast Cancer. Cancer Research, 2018, 78, 4826-4838.	0.4	10
40	mTORâ€dependent selective translation rapidly expands lysosome biogenesis, volume and retention capacity during phagocyte activatio. FASEB Journal, 2018, 32, 542.6.	0.2	0
41	mTOR-sensitive translation: Cleared fog reveals more trees. RNA Biology, 2017, 14, 1299-1305.	1.5	56
42	Cancer as an ecomolecular disease and a neoplastic consortium. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 484-499.	3.3	14
43	Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Nucleic Acids Research, 2017, 45, 11941-11953.	6.5	63
44	mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Molecular Cell, 2017, 67, 922-935.e5.	4.5	249
45	Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends in Cell Biology, 2017, 27, 738-752.	3.6	99
46	A Unique ISR Program Determines Cellular Responses to Chronic Stress. Molecular Cell, 2017, 68, 885-900.e6.	4.5	135
47	MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. Journal of Clinical Investigation, 2017, 127, 4179-4192.	3.9	62
48	mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nature Communications, 2016, 7, 11127.	5.8	75
49	RNA G-quadruplexes and their potential regulatory roles in translation. Translation, 2016, 4, e1244031.	2.9	118
50	Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer. Trends in Cell Biology, 2016, 26, 918-933.	3.6	96
51	The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nature Communications, 2016, 7, 12700.	5.8	134
52	Nucleus to Mitochondria: Lost in Transcription, Found in Translation. Developmental Cell, 2016, 37, 490-492.	3.1	5
53	nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Research, 2016, 26, 636-648.	2.4	177
54	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701

#	Article	IF	CITATIONS
55	Biomedical Potential of mTOR Modulation by Nanoparticles. Trends in Biotechnology, 2016, 34, 349-353.	4.9	30
56	Aven recognition of RNA C-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. ELife, 2015, 4, .	2.8	83
57	mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 2015, 14, 473-480.	1.3	397
58	Targeting the translation machinery in cancer. Nature Reviews Drug Discovery, 2015, 14, 261-278.	21.5	628
59	Translation and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 751-752.	0.9	10
60	The Role of eIF4E in Response and Acquired Resistance to Vemurafenib in Melanoma. Journal of Investigative Dermatology, 2015, 135, 1368-1376.	0.3	24
61	SBI-0640756 Attenuates the Growth of Clinically Unresponsive Melanomas by Disrupting the eIF4F Translation Initiation Complex. Cancer Research, 2015, 75, 5211-5218.	0.4	28
62	The ShcA adaptor activates AKT signaling to potentiate breast tumor angiogenesis by stimulating VEGF mRNA translation in a 4E-BP-dependent manner. Oncogene, 2015, 34, 1729-1735.	2.6	19
63	Estrogen receptor alpha drives proliferation in PTEN-deficient prostate carcinoma by stimulating survival signaling, MYC expression and altering glucose sensitivity. Oncotarget, 2015, 6, 604-616.	0.8	43
64	Co-translational mechanisms of quality control of newly synthesized polypeptides. Translation, 2014, 2, e28109.	2.9	10
65	FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and De Novo GluA2 Translation. Cell Reports, 2014, 9, 1402-1416.	2.9	40
66	Largen: A Molecular Regulator of Mammalian Cell Size Control. Molecular Cell, 2014, 53, 904-915.	4.5	30
67	Translational control of immune responses: from transcripts to translatomes. Nature Immunology, 2014, 15, 503-511.	7.0	193
68	Serine Deprivation Enhances Antineoplastic Activity of Biguanides. Cancer Research, 2014, 74, 7521-7533.	0.4	113
69	Distinctive tRNA Repertoires in Proliferating versus Differentiating Cells. Cell, 2014, 158, 1238-1239.	13.5	14
70	Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. Journal of Molecular Cell Biology, 2014, 6, 255-266.	1.5	77
71	Inactive C-terminal telomerase reverse transcriptase insertion splicing variants are dominant-negative inhibitors of telomerase. Biochimie, 2014, 101, 93-103.	1.3	18
72	Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale. Journal of Visualized Experiments, 2014, , .	0.2	153

#	Article	IF	CITATIONS
73	eIF4E Phosphorylation Downstream of MAPK Pathway. , 2014, , 363-374.		1
74	mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 2013, 18, 698-711.	7.2	647
75	Degradation of Newly Synthesized Polypeptides by Ribosome-Associated RACK1/c-Jun N-Terminal Kinase/Eukaryotic Elongation Factor 1A2 Complex. Molecular and Cellular Biology, 2013, 33, 2510-2526.	1.1	58
76	RACK1 Function in Cell Motility and Protein Synthesis. Genes and Cancer, 2013, 4, 369-377.	0.6	62
77	Distinct Translational Control in CD4+ T Cell Subsets. PLoS Genetics, 2013, 9, e1003494.	1.5	69
78	Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q. PLoS Biology, 2013, 11, e1001564.	2.6	47
79	Trans-HSF1 Express. Science, 2013, 341, 242-243.	6.0	2
80	Abstract 3575: Integration of estradiol signaling at the translational and transcriptional level in prostate cancer cells , 2013, , .		0
81	Regulation of mRNA Translation by Signaling Pathways. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012252-a012252.	2.3	146
82	A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development. Molecular and Cellular Biology, 2012, 32, 3585-3593.	1.1	164
83	Carbon Source and Myc Expression Influence the Antiproliferative Actions of Metformin. Cancer Research, 2012, 72, 6257-6267.	0.4	39
84	elF4E/4E-BP Ratio Predicts the Efficacy of mTOR Targeted Therapies. Cancer Research, 2012, 72, 6468-6476.	0.4	140
85	Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8977-8982.	3.3	169
86	Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nature Immunology, 2012, 13, 543-550.	7.0	114
87	mTOR inhibitor efficacy is determined by the elF4E/4E-BP ratio. Oncotarget, 2012, 3, 1491-1492.	0.8	20
88	Translational Control by the Eukaryotic Ribosome. Cell, 2011, 145, 333-334.	13.5	28
89	Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection. Cell Host and Microbe, 2011, 9, 331-341.	5.1	153
90	Cap and capâ€binding proteins in the control of gene expression. Wiley Interdisciplinary Reviews RNA, 2011, 2, 277-298.	3.2	338

#	Article	IF	CITATIONS
91	mRNA Translation and Energy Metabolism in Cancer: The Role of the MAPK and mTORC1 Pathways. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 355-367.	2.0	77
92	Activation Loop Phosphorylation of ERK3/ERK4 by Group I p21-activated Kinases (PAKs) Defines a Novel PAK-ERK3/4-MAPK-activated Protein Kinase 5 Signaling Pathway. Journal of Biological Chemistry, 2011, 286, 6470-6478.	1.6	65
93	Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 433-439.	1.1	389
94	Burn Out or Fade Away?. Science, 2010, 327, 1210-1211.	6.0	11
95	Control of Cell Survival and Proliferation by Mammalian Eukaryotic Initiation Factor 4B. Molecular and Cellular Biology, 2010, 30, 1478-1485.	1.1	116
96	mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs. Science, 2010, 328, 1172-1176.	6.0	624
97	S6K1 Plays a Critical Role in Early Adipocyte Differentiation. Developmental Cell, 2010, 18, 763-774.	3.1	171
98	An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein. Biochemical and Biophysical Research Communications, 2010, 393, 625-630.	1.0	24
99	4Eâ€BPs at the crossroads of oncogenic MAPK and AKT signaling. Pigment Cell and Melanoma Research, 2010, 23, 585-586.	1.5	1
100	The eukaryotic translation initiation factor 4E (eIF4E) and HuR RNA operons collaboratively regulate the expression of survival and proliferative genes. Cell Cycle, 2009, 8, 959-964.	1.3	26
101	Control of p53 multimerization by Ubc13 is JNK-regulated. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12676-12681.	3.3	44
102	Stability of Eukaryotic Translation Initiation Factor 4E mRNA Is Regulated by HuR, and This Activity Is Dysregulated in Cancer. Molecular and Cellular Biology, 2009, 29, 1152-1162.	1.1	87
103	p53-Dependent Translational Control of Senescence and Transformation via 4E-BPs. Cancer Cell, 2009, 16, 439-446.	7.7	104
104	A mechanism of nucleocytoplasmic trafficking for the homeodomain protein PRH. Molecular and Cellular Biochemistry, 2009, 332, 173-181.	1.4	7
105	Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO Journal, 2009, 28, 1087-1098.	3.5	120
106	Controlling Gene Expression through RNA Regulons: The Role of the Eukaryotic Translation Initiation Factor eIF4E. Cell Cycle, 2007, 6, 65-69.	1.3	136
107	Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands. EMBO Journal, 2006, 25, 5138-5149.	3.5	88
108	Frequency analysis and clinical characterization of different types of spinocerebellar ataxia in Serbian patients. Movement Disorders, 2006, 21, 187-191.	2.2	35

#	Article	IF	CITATIONS
109	Regulation of p53 Localization and Activity by Ubc13. Molecular and Cellular Biology, 2006, 26, 8901-8913.	1.1	96
110	eIF4E is a central node of an RNA regulon that governs cellular proliferation. Journal of Cell Biology, 2006, 175, 415-426.	2.3	246
111	Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds. Journal of General Virology, 2006, 87, 1217-1228.	1.3	40
112	elF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. Journal of Cell Biology, 2005, 169, 245-256.	2.3	166
113	The Proline-Rich Homeodomain (PRH/HEX) Protein Is Down-Regulated in Liver during Infection with Lymphocytic Choriomeningitis Virus. Journal of Virology, 2005, 79, 2461-2473.	1.5	28
114	Further evidence that ribavirin interacts with eIF4E. Rna, 2005, 11, 1762-1766.	1.6	83
115	Eukaryotic Translation Initiation Factor 4E Activity Is Modulated by HOXA9 at Multiple Levels. Molecular and Cellular Biology, 2005, 25, 1100-1112.	1.1	85
116	Phosphorylation of the Eukaryotic Translation Initiation Factor eIF4E Contributes to Its Transformation and mRNA Transport Activities. Cancer Research, 2004, 64, 8639-8642.	0.4	226
117	Ribavirin suppresses elF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18105-18110.	3.3	267
118	The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO Journal, 2003, 22, 689-703.	3.5	153
119	Aberrant Eukaryotic Translation Initiation Factor 4E-Dependent mRNA Transport Impedes Hematopoietic Differentiation and Contributes to Leukemogenesis. Molecular and Cellular Biology, 2003, 23, 8992-9002.	1.1	198
120	Gamma Interferon and Cadmium Treatments Modulate Eukaryotic Initiation Factor 4E-Dependent mRNA Transport of Cyclin D1 in a PML-Dependent Manner. Molecular and Cellular Biology, 2002, 22, 6183-6198.	1.1	55
121	Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia. Clinical Genetics, 2002, 62, 321-324.	1.0	20
122	Is the 31 CAG repeat allele of the spinocerebellar ataxia 1 (SCA1) gene locus non-specifically associated with trinucleotide expansion diseases?. Psychiatric Genetics, 2001, 11, 201-205.	0.6	5