Umesh P Agarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5033357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	38.1	690
2	Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy and Environmental Science, 2011, 4, 973.	30.8	437
3	Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta, 2006, 224, 1141-1153.	3.2	364
4	Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate. Journal of the American Chemical Society, 2011, 133, 11163-11174.	13.7	321
5	FT-Raman Spectroscopy of Wood: Identifying Contributions of Lignin and Carbohydrate Polymers in the Spectrum of Black Spruce (Picea Mariana). Applied Spectroscopy, 1997, 51, 1648-1655.	2.2	316
6	Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 2015, 22, 1753-1762.	4.9	305
7	A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers, 2013, 97, 226-234.	10.2	253
8	Raman Microprobe Evidence for Lignin Orientation in the Cell Walls of Native Woody Tissue. Science, 1985, 227, 636-638.	12.6	231
9	Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose, 2010, 17, 721-733.	4.9	226
10	FT–Raman Investigation of Milled-Wood Lignins: Softwood, Hardwood, and Chemically Modified Black Spruce Lignins. Journal of Wood Chemistry and Technology, 2011, 31, 324-344.	1.7	173
11	Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose, 2016, 23, 125-144.	4.9	120
12	In-situ Raman microprobe studies of plant cell walls: Macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P Planta, 1986, 169, 325-332.	3.2	117
13	1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Frontiers in Plant Science, 2014, 5, 490.	3.6	111
14	Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose, 2017, 24, 1971-1984.	4.9	107
15	Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohydrate Polymers, 2017, 169, 108-116.	10.2	104
16	Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status. Molecules, 2019, 24, 1659.	3.8	104
17	Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods. Journal of Agricultural and Food Chemistry, 2013, 61, 103-113.	5.2	100
18	Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose, 2017, 24, 2483-2498.	4.9	77

Umesh P Agarwal

#	Article	IF	CITATIONS
19	New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydrate Polymers, 2018, 190, 262-270.	10.2	70
20	Techniques for Characterizing Lignin. , 2016, , 49-66.		63
21	Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer, 2018, 135, 305-313.	3.8	59
22	Nearâ€IR surfaceâ€enhanced Raman spectrum of lignin. Journal of Raman Spectroscopy, 2009, 40, 1527-1534.	2.5	58
23	Vibrational Spectroscopy. , 2010, , 103-136.		54
24	Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. Biotechnology for Biofuels, 2021, 14, 114.	6.2	51
25	Spatially Resolved Characterization of Cellulose Nanocrystal–Polypropylene Composite by Confocal Raman Microscopy. Applied Spectroscopy, 2012, 66, 750-756.	2.2	48
26	Assignment of the Photoyellowing-Related 1675 cm ^{â^'1} Raman/IR Band to P-Quinones and Its Implications to the Mechanism of Color Reversion in Mechanical Pulps. Journal of Wood Chemistry and Technology, 1998, 18, 381-402.	1.7	47
27	Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification. Holzforschung, 2013, 67, 371-377.	1.9	44
28	Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose, 2018, 25, 5791-5805.	4.9	43
29	Towards the scalable isolation of cellulose nanocrystals from tunicates. Scientific Reports, 2020, 10, 19090.	3.3	39
30	Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy. Holzforschung, 2008, 62, 667-675.	1.9	37
31	Sequential Treatment of Mechanical and Chemimechanical Pulps with Light and Heat: A Raman Spectroscopic Study. Holzforschung, 1995, 49, 300-312.	1.9	34
32	Photoyellowing of Thermomechanical Pulps: Looking Beyond α-Carbonyl and Ethylenic Groups as the Initiating Structures. Journal of Wood Chemistry and Technology, 1997, 17, 1-26.	1.7	32
33	Detection and quantitation of cellulose II by Raman spectroscopy. Cellulose, 2021, 28, 9069-9079.	4.9	31
34	"Self-Absorption―Phenomenon in Near-Infrared Fourier Transform Raman Spectroscopy of Cellulosic and Lignocellulosic Materials. Applied Spectroscopy, 2005, 59, 385-388.	2.2	26
35	Preparation and Characterization of the Nanocomposites from Chemically Modified Nanocellulose and Poly(lactic acid). Journal of Renewable Materials, 2017, 5, 410-422.	2.2	21
36	Characterization of the supramolecular structures of cellulose nanocrystals of different origins. Cellulose, 2021, 28, 1369-1385.	4.9	19

UMESH P AGARWAL

#	ARTICLE	IF	CITATIONS
37	Contributions of Crystalline and Noncrystalline Cellulose Can Occur in the Same Spectral Regions: Evidence Based on Raman and IR and Its Implication for Crystallinity Measurements. Biomacromolecules, 2021, 22, 1357-1373.	5.4	18
38	Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2019, 67, 4367-4374.	5.2	17
39	Raman Spectroscopy in the Analysis of Cellulose Nanomaterials. ACS Symposium Series, 2017, , 75-90.	0.5	16
40	Vibration relaxation of hydrogen-bonded species in solution. IV. Temperature and concentration dependence of the νa (OHî—,N) band of phenol-pyridine. Chemical Physics, 1983, 74, 35-41.	1.9	14
41	Raman Spectral Features Associated with Chromophores in High-Yield Pulps. Journal of Wood Chemistry and Technology, 1994, 14, 227-241.	1.7	14
42	Impacts of fiber orientation and milling on observed crystallinity in jack pine. Wood Science and Technology, 2014, 48, 1213-1227.	3.2	13
43	Formation and Identification of Cis/Trans Ferulic Acid in Photoyellowed White Spruce Mechanical Pulp. Journal of Wood Chemistry and Technology, 1990, 10, 169-190.	1.7	11
44	Pilot-Scale Production of Cellulosic Nanowhiskers With Similar Morphology to Cellulose Nanocrystals. Frontiers in Bioengineering and Biotechnology, 2020, 8, 565084.	4.1	11
45	Oxidative delignification: The roles of lignin reactivity and accessibility. Journal of Cleaner Production, 2022, 363, 132351.	9.3	9
46	Raman Spectroscopic Evidence for Coniferyl Alcohol Structures in Bleached and Sulfonated Mechanical Pulps. ACS Symposium Series, 1993, , 26-44.	0.5	7
47	Thermal Conversion of Pine Wood Char to Carbon Nanomaterials in the Presence of Iron Nanoparticles. Forest Products Journal, 2012, 62, 462-466.	0.4	5
48	The Nanostructures of Native Celluloses, Their Transformations upon Isolation, and Their Implications for Production of Nanocelluloses. ACS Symposium Series, 2017, , 1-18.	0.5	3
49	Beyond Crystallinity: Using Raman Spectroscopic Methods to Further Define Aggregated/Supramolecular Structure of Cellulose. Frontiers in Energy Research, 2022, 10, .	2.3	2
50	Swelling by Hydrochloric Acid Partially Retains Cellulose-I Type Allomorphic Ultrastructure But Enhances Susceptibility toward Cellulase Hydrolysis Such as Highly Amorphous Cellulose. ACS Symposium Series, 2019, , 69-88.	0.5	1