Zhixi Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/503333/publications.pdf

Version: 2024-02-01

94433 98798 11,291 68 37 67 citations h-index g-index papers 69 69 69 9925 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183.	27.8	3,854
2	Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33, 408-414.	17.5	1,023
3	Pan-Genome of Wild and Cultivated Soybeans. Cell, 2020, 182, 162-176.e13.	28.9	508
4	Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21760-21765.	7.1	469
5	Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology, 2017, 18, 161.	8.8	363
6	Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 2017, 49, 773-779.	21.4	341
7	Artificial selection for determinate growth habit in soybean. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8563-8568.	7.1	330
8	Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3, 17031.	9.3	293
9	Global Dissection of Alternative Splicing in Paleopolyploid Soybean. Plant Cell, 2014, 26, 996-1008.	6.6	273
10	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	28.9	259
11	Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52, 428-436.	21.4	229
12	Genome-wide association study of 12 agronomic traits in peach. Nature Communications, 2016, 7, 13246.	12.8	202
13	Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?. Genome Research, 2009, 19, 2221-2230.	5. 5	169
14	Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50, 1435-1441.	21.4	168
15	Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Molecular Plant, 2018, 11, 860-873.	8.3	168
16	Toward a "Green Revolution―for Soybean. Molecular Plant, 2020, 13, 688-697.	8.3	162
17	Evolutionary conservation, diversity and specificity of LTRâ€retrotransposons in flowering plants: insights from genomeâ€wide analysis and multiâ€specific comparison. Plant Journal, 2010, 63, 584-598.	5.7	153
18	$\langle i \rangle$ Dt2 $\langle i \rangle$ Is a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean Â. Plant Cell, 2014, 26, 2831-2842.	6.6	136

#	Article	IF	CITATIONS
19	An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetics, 2017, 13, e1006770.	3.5	128
20	Simultaneous changes in seed size, oil content and protein content driven by selection of <i>SWEET</i> homologues during soybean domestication. National Science Review, 2020, 7, 1776-1786.	9.5	128
21	SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics, 2010, 11, 113.	2.8	122
22	De novo assembly of a Chinese soybean genome. Science China Life Sciences, 2018, 61, 871-884.	4.9	122
23	Functional Evolution of Phosphatidylethanolamine Binding Proteins in Soybean and Arabidopsis. Plant Cell, 2015, 27, 323-336.	6.6	113
24	Designing future crops: challenges and strategies for sustainable agriculture. Plant Journal, 2021, 105, 1165-1178.	5.7	110
25	Genome sequencing of adzuki bean (<i>Vigna angularis</i>) provides insight into high starch and low fat accumulation and domestication. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13213-13218.	7.1	104
26	A soybean quantitative trait locus that promotes flowering under long days is identified as <i>FT5a</i> , a <i>FLOWERING LOCUS T</i> ortholog. Journal of Experimental Botany, 2016, 67, 5247-5258.	4.8	83
27	The Genomics of <i>Oryza</i> Species Provides Insights into Rice Domestication and Heterosis. Annual Review of Plant Biology, 2019, 70, 639-665.	18.7	80
28	Pericentromeric Effects Shape the Patterns of Divergence, Retention, and Expression of Duplicated Genes in the Paleopolyploid Soybean Â. Plant Cell, 2012, 24, 21-32.	6.6	79
29	Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 2022, 20, 256-282.	8.3	76
30	Elevation of soybean seed oil content through selection for seed coat shininess. Nature Plants, 2018, 4, 30-35.	9.3	75
31	<i>De novo</i> assembly of a wild pear (<i>Pyrus betuleafolia</i>) genome. Plant Biotechnology Journal, 2020, 18, 581-595.	8.3	72
32	Concerted evolution of <i>D1</i> and <id2< i=""> to regulate chlorophyll degradation in soybean. Plant Journal, 2014, 77, 700-712.</id2<>	5.7	69
33	Update soybean Zhonghuang 13 genome to a golden reference. Science China Life Sciences, 2019, 62, 1257-1260.	4.9	65
34	DNA methylation footprints during soybean domestication and improvement. Genome Biology, 2018, 19, 128.	8.8	61
35	Genome-Wide Characterization of Nonreference Transposons Reveals Evolutionary Propensities of Transposons in Soybean. Plant Cell, 2012, 24, 4422-4436.	6.6	51
36	Adaptation of Arabidopsis thaliana to the Yangtze River basin. Genome Biology, 2017, 18, 239.	8.8	44

#	Article	IF	CITATIONS
37	Natural allelic variation of <scp><i>GmST05</i></scp> controlling seed size and quality in soybean. Plant Biotechnology Journal, 2022, 20, 1807-1818.	8.3	44
38	Bifurcation and Enhancement of Autonomous-Nonautonomous Retrotransposon Partnership through LTR Swapping in Soybean Â. Plant Cell, 2010, 22, 48-61.	6.6	42
39	Decrease of gene expression diversity during domestication of animals and plants. BMC Evolutionary Biology, 2019, 19, 19.	3.2	42
40	Identification of QTNs Controlling Seed Protein Content in Soybean Using Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 2018, 9, 1690.	3.6	40
41	Global investigation of the coâ€evolution of <i><scp>MIRNA</scp></i> genes and micro <scp>RNA</scp> targets during soybean domestication. Plant Journal, 2016, 85, 396-409.	5.7	36
42	Protomer Roles in Chloroplast Chaperonin Assembly and Function. Molecular Plant, 2015, 8, 1478-1492.	8.3	33
43	Genomics progress will facilitate molecular breeding in soybean. Science China Life Sciences, 2015, 58, 813-815.	4.9	28
44	Cloning of Ln Gene Through Combined Approach of Map-based Cloning and Association Study in Soybean. Journal of Genetics and Genomics, 2013, 40, 93-96.	3.9	27
45	Identification of QTNs Controlling 100-Seed Weight in Soybean Using Multilocus Genome-Wide Association Studies. Frontiers in Genetics, 2020, 11 , 689 .	2.3	26
46	Omics-based interdisciplinarity is accelerating plant breeding. Current Opinion in Plant Biology, 2022, 66, 102167.	7.1	26
47	Downregulation of a gibberellin 3βâ€hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytologist, 2022, 235, 502-517.	7.3	26
48	A Pd1–Ps–P1 Feedback Loop Controls Pubescence Density in Soybean. Molecular Plant, 2020, 13, 1768-1783.	8.3	22
49	Development of gene-tagged molecular markers for starch synthesis-related genes in rice. Science Bulletin, 2010, 55, 3768-3777.	1.7	20
50	Functional conservation and divergence of <i>Gm<scp>CHLI</scp></i> genes in polyploid soybean. Plant Journal, 2016, 88, 584-596.	5.7	20
51	Linkage Analysis and Multi-Locus Genome-Wide Association Studies Identify QTNs Controlling Soybean Plant Height. Frontiers in Plant Science, 2020, 11, 9.	3.6	20
52	Comprehensive analyses of micro <scp>RNA</scp> gene evolution in paleopolyploid soybean genome. Plant Journal, 2013, 76, 332-344.	5.7	19
53	The antagonistic MYB paralogs <i>RH1</i> and <i>RH2</i> govern anthocyanin leaf markings in <i>Medicago truncatula</i> . New Phytologist, 2021, 229, 3330-3344.	7.3	18
54	Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis. BMC Genomics, 2011, 12, 142.	2.8	14

#	Article	IF	CITATIONS
55	Chloroplast DNA Underwent Independent Selection from Nuclear Genes during Soybean Domestication and Improvement. Journal of Genetics and Genomics, 2016, 43, 217-221.	3.9	14
56	From one linear genome to a graph-based pan-genome: a new era for genomics. Science China Life Sciences, 2020, 63, 1938-1941.	4.9	14
57	Identification of QTL and genes for pod number in soybean by linkage analysis and genome-wide association studies. Molecular Breeding, 2020, 40, 1.	2.1	14
58	Mutation of YL Results in a Yellow Leaf with Chloroplast RNA Editing Defect in Soybean. International Journal of Molecular Sciences, 2020, 21, 4275.	4.1	12
59	GenoBaits Soy40K: a highly flexible and low-cost SNP array for soybean studies. Science China Life Sciences, 2022, 65, 1898-1901.	4.9	10
60	FED: a web tool for foreign element detection of genome-edited organism. Science China Life Sciences, 2021, 64, 167-170.	4.9	8
61	Fine mapping QTL and mining genes for protein content in soybean by the combination of linkage and association analysis. Theoretical and Applied Genetics, 2021, 134, 1095-1122.	3.6	8
62	QNE1 is a key flowering regulator determining the length of the vegetative period in soybean cultivars. Science China Life Sciences, 2022, 65, 2472-2490.	4.9	8
63	Quantitative Trait Locus Analysis of Protein and Oil Content in Response to Planting Density in Soybean (Glycine max [L.] Merri.) Seeds Based on SNP Linkage Mapping. Frontiers in Genetics, 2020, 11, 563.	2.3	7
64	Genome-wide expression analysis in a dwarf soybean mutant. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S70-S73.	0.8	4
65	Oil crops: From the classical traits to genetic improvement. Journal of Integrative Plant Biology, 2021, 63, 979-980.	8.5	2
66	Nested miRNA Secondary Structure Is a Unique Determinant of miR159 Efficacy in Arabidopsis. Frontiers in Plant Science, 2022, 13, .	3.6	2
67	Super graph-based pan-genome: bring rice functional genomic study into a new dawn. Molecular Plant, 2022, , .	8.3	1
68	Convergent selection of a gene in cereals leads to grain yield upgradation. Science China Life Sciences, 2022, , 1 .	4.9	0