Pil Joon Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5028601/publications.pdf

Version: 2024-02-01

١			41344	46799
	119	8,590	49	89
	papers	citations	h-index	g-index
	124	124	124	9270
	12 (12 1	12 1	7270
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis. Epigenetics, 2022, 17, 41-58.	2.7	12
2	Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. Journal of Experimental Botany, 2022, 73, 2905-2917.	4.8	14
3	Overexpression of the <i>WOX5</i> gene inhibits shoot development. Plant Signaling and Behavior, 2022, 17, 2050095.	2.4	3
4	N ⁶ -methyladenosine–modified RNA acts as a molecular glue that drives liquid–liquid phase separation in plants. Plant Signaling and Behavior, 2022, 17, .	2.4	7
5	Recent advances in peptide signaling during Arabidopsis root development. Journal of Experimental Botany, 2021, 72, 2889-2902.	4.8	21
6	Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. Plant Methods, 2021, 17, 21.	4.3	30
7	The Arabidopsis JMJ29 Protein Controls Circadian Oscillation through Diurnal Histone Demethylation at the CCA1 and PRR9 Loci. Genes, 2021, 12, 529.	2.4	3
8	Get closer and make hotspots: liquid–liquid phase separation in plants. EMBO Reports, 2021, 22, e51656.	4.5	33
9	Transcriptional activation of <i>SUGAR TRANSPORT PROTEIN 13</i> mediates biotic and abiotic stress signaling. Plant Signaling and Behavior, 2021, 16, 1920759.	2.4	11
10	The DME demethylase regulates sporophyte gene expression, cell proliferation, differentiation, and meristem resurrection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
11	Ca2+talyzing Initial Responses to Environmental Stresses. Trends in Plant Science, 2021, 26, 849-870.	8.8	54
12	Peptide Signaling during Plant Reproduction. Trends in Plant Science, 2021, 26, 822-835.	8.8	33
13	iRegNet: an <u>i</u> ntegrative <u>Reg</u> ulatory <u>Net</u> work analysis tool for <i>Arabidopsis thaliana</i> . Plant Physiology, 2021, 187, 1292-1309.	4.8	6
14	Go green with plant organelle genome editing. Molecular Plant, 2021, 14, 1415-1417.	8.3	2
15	MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis. Molecules and Cells, 2021, 44, 746-757.	2.6	6
16	Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Reports, 2021, 37, 109980.	6.4	16
17	Regenerating from the middle. Nature Plants, 2021, 7, 1441-1442.	9.3	2
18	HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution. Molecules and Cells, 2021, 44, 883-892.	2.6	3

#	Article	IF	Citations
19	De novo shoot organogenesis during plant regeneration. Journal of Experimental Botany, 2020, 71, 63-72.	4.8	55
20	The Evening Complex Establishes Repressive Chromatin Domains Via H2A.Z Deposition. Plant Physiology, 2020, 182, 612-625.	4.8	23
21	Heat Makes Cellular Hotspots in Plants. Molecular Plant, 2020, 13, 1536-1538.	8.3	0
22	EAT-UpTF: Enrichment Analysis Tool for Upstream Transcription Factors of a Group of Plant Genes. Frontiers in Genetics, 2020, 11, 566569.	2.3	5
23	Brassinosteroids Regulate Circadian Oscillation via the BES1/TPL-CCA1/LHY Module in Arabidopsis thaliana. IScience, 2020, 23, 101528.	4.1	10
24	Transcriptome comparison between pluripotent and non-pluripotent calli derived from mature rice seeds. Scientific Reports, 2020, 10, 21257.	3.3	10
25	The ASHR3 SET-Domain Protein is a Pivotal Upstream Coordinator for Wound-Induced Callus Formation in Arabidopsis. Journal of Plant Biology, 2020, 63, 361-368.	2.1	8
26	m6A mRNA Modification as a New Layer of Gene Regulation in Plants. Journal of Plant Biology, 2020, 63, 97-106.	2.1	17
27	H3K36me2 is highly correlated with m ⁶ A modifications in plants. Journal of Integrative Plant Biology, 2020, 62, 1455-1460.	8.5	23
28	The Arabidopsis MYB96 Transcription Factor Mediates ABA-Dependent Triacylglycerol Accumulation in Vegetative Tissues under Drought Stress Conditions. Plants, 2019, 8, 296.	3.5	22
29	Role of the INDETERMINATE DOMAIN Genes in Plants. International Journal of Molecular Sciences, 2019, 20, 2286.	4.1	24
30	JA-pretreated hypocotyl explants potentiate de novo shoot regeneration in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1618180.	2.4	8
31	The EC-HDA9 complex rhythmically regulates histone acetylation at the TOC1 promoter in Arabidopsis. Communications Biology, 2019, 2, 143.	4.4	31
32	The Arabidopsis Sin3-HDAC Complex Facilitates Temporal Histone Deacetylation at the CCA1 and PRR9 Loci for Robust Circadian Oscillation. Frontiers in Plant Science, 2019, 10, 171.	3.6	10
33	MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nature Communications, 2019, 10, 1713.	12.8	75
34	Interaction of DGAT1 and PDAT1 to enhance TAG assembly in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2019, 14, 1554467.	2.4	11
35	<i>ARABIDOPSIS TRITHORAX 4</i> Facilitates Shoot Identity Establishment during the Plant Regeneration Process. Plant and Cell Physiology, 2019, 60, 826-834.	3.1	26
36	The MYB96 Transcription Factor Regulates Triacylglycerol Accumulation by Activating DGAT1 and PDAT1 Expression in Arabidopsis Seeds. Plant and Cell Physiology, 2018, 59, 1432-1442.	3.1	34

#	Article	IF	Citations
37	Signaling Peptides and Receptors Coordinating Plant Root Development. Trends in Plant Science, 2018, 23, 337-351.	8.8	79
38	Dynamic Epigenetic Changes during Plant Regeneration. Trends in Plant Science, 2018, 23, 235-247.	8.8	114
39	The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabidopsis. Developmental Cell, 2018, 45, 101-113.e4.	7.0	71
40	ATXR2 as a core regulator of <i>de novo</i> root organogenesis. Plant Signaling and Behavior, 2018, 13, e1449543.	2.4	10
41	Varying Auxin Levels Induce Distinct Pluripotent States in Callus Cells. Frontiers in Plant Science, 2018, 9, 1653.	3.6	18
42	The HAF2 protein shapes histone acetylation levels of PRR5 and LUX loci in Arabidopsis. Planta, 2018, 248, 513-518.	3.2	17
43	Dependence and independence of the root clock on the shoot clock in Arabidopsis. Genes and Genomics, 2018, 40, 1063-1068.	1.4	13
44	JMJ30â€mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant Journal, 2018, 95, 961-975.	5.7	70
45	Bidirectional regulation between circadian clock and ABA signaling. Communicative and Integrative Biology, 2017, 10, e1296999.	1.4	2
46	<i>Arabidopsis</i> TOR signaling is essential for sugarâ€regulated callus formation. Journal of Integrative Plant Biology, 2017, 59, 742-746.	8.5	15
47	LBD14/ASL17 Positively Regulates Lateral Root Formation and is Involved in ABA Response for Root Architecture in Arabidopsis. Plant and Cell Physiology, 2017, 58, 2190-2201.	3.1	28
48	High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis. Planta, 2017, 246, 797-802.	3.2	13
49	<i>Arabidopsis</i> ATXR2 deposits H3K36me3 at the promoters of <i>LBD</i> genes to facilitate cellular dedifferentiation. Science Signaling, 2017, 10, .	3.6	63
50	Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. Plant Journal, 2017, 89, 128-140.	5.7	34
51	Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation. PLoS ONE, 2017, 12, e0181804.	2.5	28
52	A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system. Journal of Plant Biotechnology, 2017, 44, 89-96.	0.4	4
53	MYB96 shapes the circadian gating of ABA signaling in Arabidopsis. Scientific Reports, 2016, 6, 17754.	3.3	47
54	Targeted genome editing, an alternative tool for trait improvement in horticultural crops. Horticulture Environment and Biotechnology, 2016, 57, 531-543.	2.1	13

#	Article	IF	CITATIONS
55	Increased STM expression is associated with drought tolerance in Arabidopsis. Journal of Plant Physiology, 2016, 201, 79-84.	3.5	10
56	The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96. Nature Communications, 2016, 7, 12525.	12.8	73
57	Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis. Journal of Plant Physiology, 2016, 191, 95-100.	3.5	86
58	RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli. Molecules and Cells, 2016, 39, 484-494.	2.6	29
59	MYB96 stimulates C18 fatty acid elongation in Arabidopsis seeds. Plant Biotechnology Reports, 2015, 9, 161-166.	1.5	18
60	AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis. BMC Plant Biology, 2015, 15, 110.	3.6	76
61	Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. Plant Cell, 2015, 27, 3425-3438.	6.6	104
62	STRESSing the role of the plant circadian clock. Trends in Plant Science, 2015, 20, 230-237.	8.8	119
63	The Arabidopsis E3 ubiquitin ligase HOS1 contributes to auxin biosynthesis in the control of hypocotyl elongation. Plant Growth Regulation, 2015, 76, 157-165.	3.4	8
64	The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis. Scientific Reports, 2015, 5, 12071.	3.3	39
65	The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Molecular Biology, 2015, 87, 371-381.	3.9	63
66	The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of <i>ABSCISIC ACID-INSENSITIVE4</i> in the Control of Seed Germination. Plant Physiology, 2015, 168, 677-689.	4.8	62
67	The <scp>MYB</scp> 96– <scp>HHP</scp> module integrates cold and abscisic acid signaling to activate the <scp>CBF</scp> – <scp>COR</scp> pathway in Arabidopsis. Plant Journal, 2015, 82, 962-977.	5 . 7	140
68	The E3 ubiquitin ligase HOS1 is involved in ethylene regulation of leaf expansion in <i>Arabidopsis</i> Plant Signaling and Behavior, 2015, 10, e1003755.	2.4	19
69	Coordination of seed dormancy and germination processes by MYB96. Plant Signaling and Behavior, 2015, 10, e1056423.	2.4	13
70	Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis. Journal of Plant Research, 2015, 128, 187-199.	2.4	17
71	Membrane-triggered plant immunity. Plant Signaling and Behavior, 2014, 9, e29729.	2.4	1
72	The Arabidopsis Floral Repressor BFT Delays Flowering by Competing with FT for FD Binding under High Salinity. Molecular Plant, 2014, 7, 377-387.	8.3	79

#	Article	IF	Citations
73	Recent advances in plant membraneâ€bound transcription factor research: Emphasis on intracellular movement. Journal of Integrative Plant Biology, 2014, 56, 334-342.	8.5	33
74	Airborne signals from salt-stressed i> Arabidopsis < /i> plants trigger salinity tolerance in neighboring plants. Plant Signaling and Behavior, 2014, 9, e28392.	2.4	31
75	Multiple Layers of Posttranslational Regulation Refine Circadian Clock Activity in <i>Arabidopsis</i> Plant Cell, 2014, 26, 79-87.	6.6	81
76	Natural variation in floral nectar proteins of two Nicotiana attenuata accessions. BMC Plant Biology, 2013, 13, 101.	3.6	39
77	Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta, 2013, 237, 1415-1424.	3.2	81
78	A Competitive Peptide Inhibitor KIDARI Negatively Regulates HFR1 by Forming Nonfunctional Heterodimers in Arabidopsis Photomorphogenesis. Molecules and Cells, 2013, 35, 25-31.	2.6	33
79	Controlled turnover of CONSTANS protein by the HOS1 E3 ligase regulates floral transition at low temperatures. Plant Signaling and Behavior, 2013, 8, e23780.	2.4	10
80	A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in <i>Arabidopsis</i> . Biochemical Journal, 2012, 442, 551-561.	3.7	56
81	<i>CCA1</i> alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1194-1196.	2.4	47
82	The E3 Ubiquitin Ligase HOS1 Regulates Arabidopsis Flowering by Mediating CONSTANS Degradation Under Cold Stress. Journal of Biological Chemistry, 2012, 287, 43277-43287.	3.4	90
83	A Self-Regulatory Circuit of CIRCADIAN CLOCK-ASSOCIATED1 Underlies the Circadian Clock Regulation of Temperature Responses in <i>Arabidopsis</i> Plant Cell, 2012, 24, 2427-2442.	6.6	249
84	The AT-hook Motif-containing Protein AHL22 Regulates Flowering Initiation by Modifying FLOWERING LOCUS T Chromatin in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 15307-15316.	3.4	108
85	Arabidopsis RNA-binding Protein FCA Regulates MicroRNA172 Processing in Thermosensory Flowering. Journal of Biological Chemistry, 2012, 287, 16007-16016.	3.4	78
86	Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. Journal of Plant Biology, 2012, 55, 390-397.	2.1	38
87	Targeted inactivation of transcription factors by overexpression of their truncated forms in plants. Plant Journal, 2012, 72, 162-172.	5.7	25
88	Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta, 2012, 235, 923-938.	3.2	117
89	The SOC1â€SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant Journal, 2012, 69, 577-588.	5.7	225
90	A NAC transcription factor NTL4 promotes reactive oxygen species production during droughtâ€induced leaf senescence in Arabidopsis. Plant Journal, 2012, 70, 831-844.	5.7	360

#	Article	IF	Citations
91	Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism. Nature Communications, 2011, 2, 303.	12.8	132
92	Competitive inhibition of transcription factors by small interfering peptides. Trends in Plant Science, 2011, 16, 541-549.	8.8	100
93	The MYB96 Transcription Factor Regulates Cuticular Wax Biosynthesis under Drought Conditions in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 1138-1152.	6.6	522
94	Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in <i>Arabidopsis</i> Plant Journal, 2011, 65, 418-429.	5.7	137
95	Expression of Arabidopsis pathogenesisâ€related genes during nematode infection. Molecular Plant Pathology, 2011, 12, 355-364.	4.2	150
96	The <i>Arabidopsis</i> NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf Senescence via the <i>COR</i> / <i>RD</i> Genes. Plant Cell, 2011, 23, 2155-2168.	6.6	366
97	miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology, 2011, 76, 35-45.	3.9	177
98	An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233, 189-200.	3.2	170
99	Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis. Molecules and Cells, 2011, 31, 361-370.	2.6	20
100	The Floral Repressor BROTHER OF FT AND TFL1 (BFT) Modulates Flowering Initiation under High Salinity in Arabidopsis. Molecules and Cells, 2011, 32, 295-304.	2.6	72
101	Signaling linkage between environmental stress resistance and leaf senescence in <i>Arabidopsis</i> Plant Signaling and Behavior, 2011, 6, 1564-1566.	2.4	16
102	Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signaling and Behavior, 2011, 6, 1043-1045.	2.4	82
103	Proteolytic processing of an <i>Arabidopsis</i> membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity. Biochemical Journal, 2010, 427, 359-367.	3.7	63
104	Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Molecular Biology, 2010, 72, 485-497.	3.9	35
105	MYB96â€mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in <i>Arabidopsis</i> . New Phytologist, 2010, 186, 471-483.	7.3	293
106	Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant Journal, 2010, 61, 661-671.	5.7	253
107	A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals. Plant Signaling and Behavior, 2010, 5, 481-483.	2.4	60
108	Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics, 2010, 95, 56-65.	2.9	112

#	Article	IF	Citations
109	MicroRNA biogenesis and function in higher plants. Plant Biotechnology Reports, 2009, 3, 111-126.	1.5	49
110	The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis. Plant Physiology, 2009, 151, 275-289.	4.8	510
111	Auxin homeostasis during lateral root development under drought condition. Plant Signaling and Behavior, 2009, 4, 1002-1004.	2.4	71
112	Membrane-bound transcription factors in plants. Trends in Plant Science, 2008, 13, 550-556.	8.8	199
113	Molecular and Functional Profiling of Arabidopsis Pathogenesis-Related Genes: Insights into Their Roles in Salt Response of Seed Germination. Plant and Cell Physiology, 2008, 49, 334-344.	3.1	197
114	HD-ZIP III Activity Is Modulated by Competitive Inhibitors via a Feedback Loop in <i>Arabidopsis</i> Shoot Apical Meristem Development. Plant Cell, 2008, 20, 920-933.	6.6	127
115	Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Research, 2007, 35, 203-213.	14.5	214
116	The <i>GIGANTEA</i> -Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of <i>CONSTANS</i> in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2736-2748.	6.6	438
117	An Arabidopsis GH3 Gene, Encoding an Auxin-Conjugating Enzyme, Mediates Phytochrome B-Regulated Light Signals in Hypocotyl Growth. Plant and Cell Physiology, 2007, 48, 1514-1514.	3.1	3
118	An Arabidopsis GH3 Gene, Encoding an Auxin-Conjugating Enzyme, Mediates Phytochrome B-Regulated Light Signals in Hypocotyl Growth. Plant and Cell Physiology, 2007, 48, 1236-1241.	3.1	59
119	Arabidopsis HISTONE DEACETYLASE 9 Stimulates Hypocotyl Cell Elongation by Repressing GIGANTEA Expression Under Short Day Photoperiod. Frontiers in Plant Science, 0, 13, .	3.6	2