
Cenqi Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 2018, 3, .	48.7	2,163
2	Fused Hexacyclic Nonfullerene Acceptor with Strong Nearâ€Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Advanced Materials, 2017, 29, 1701308.	21.0	364
3	Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. Journal of the American Chemical Society, 2018, 140, 9140-9147.	13.7	361
4	Fused Tris(thienothiophene)â€Based Electron Acceptor with Strong Nearâ€Infrared Absorption for Highâ€Performance Asâ€Cast Solar Cells. Advanced Materials, 2018, 30, 1705969.	21.0	340
5	Enhancing Performance of Nonfullerene Acceptors via Sideâ€Chain Conjugation Strategy. Advanced Materials, 2017, 29, 1702125.	21.0	249
6	Realizing Small Energy Loss of 0.55 eV, High Openâ€Circuit Voltage >1 V and High Efficiency >10% in Fullereneâ€Free Polymer Solar Cells via Energy Driver. Advanced Materials, 2017, 29, 1605216.	21.0	230
7	Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Advanced Materials, 2016, 28, 8021-8028.	21.0	207
8	Additive-induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells. Energy and Environmental Science, 2021, 14, 3044-3052.	30.8	170
9	Breaking 10% Efficiency in Semitransparent Solar Cells with Fused-Undecacyclic Electron Acceptor. Chemistry of Materials, 2018, 30, 239-245.	6.7	167
10	Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Advanced Materials, 2016, 28, 5822-5829.	21.0	134
11	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
12	Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%. Chemistry of Materials, 2018, 30, 8661-8668.	6.7	101
13	Delicate Morphology Control Triggers 14.7% Efficiency Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001076.	19.5	100
14	Donor Derivative Incorporation: An Effective Strategy toward High Performance Allâ€ 5 mallâ€Molecule Ternary Organic Solar Cells. Advanced Science, 2019, 6, 1901613.	11.2	93
15	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	30.8	84
16	Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy and Environmental Science, 2015, 8, 2357-2364.	30.8	80
17	Recent progress of all-polymer solar cells – From chemical structure and device physics to photovoltaic performance. Materials Science and Engineering Reports, 2020, 140, 100542.	31.8	75
18	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313.	6.7	74

Cenqi Yan

#	Article	IF	CITATIONS
19	Benzodithiophene-Based Small-Molecule Donors for Next-Generation All-Small-Molecule Organic Photovoltaics. Matter, 2020, 3, 1403-1432.	10.0	72
20	Synergy of Liquidâ€Crystalline Smallâ€Molecule and Polymeric Donors Delivers Uncommon Morphology Evolution and 16.6% Efficiency Organic Photovoltaics. Advanced Science, 2020, 7, 2000149.	11.2	67
21	Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic Energy Loss Reduction and Morphology Fineâ€īuning. Advanced Materials, 2022, 34, e2107659.	21.0	57
22	Stretchable ITOâ€Free Organic Solar Cells with Intrinsic Antiâ€Reflection Substrate for Highâ€Efficiency Outdoor and Indoor Energy Harvesting. Advanced Functional Materials, 2021, 31, 2010172.	14.9	53
23	A Novel Wideâ€Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2020, 30, 1910466.	14.9	50
24	Emerging Strategies toward Mechanically Robust Organic Photovoltaics: Focus on Active Layer. Advanced Energy Materials, 2022, 12, .	19.5	50
25	Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes and Pigments, 2017, 139, 627-634.	3.7	48
26	Enhancing the performance of non-fullerene organic solar cells <i>via</i> end group engineering of fused-ring electron acceptors. Journal of Materials Chemistry A, 2018, 6, 16638-16644.	10.3	47
27	Efficient and stable organic solar cells via a sequential process. Journal of Materials Chemistry C, 2016, 4, 8086-8093.	5.5	45
28	Rhodanine flanked indacenodithiophene as non-fullerene acceptor for efficient polymer solar cells. Science China Chemistry, 2017, 60, 257-263.	8.2	42
29	1,1-Dicyanomethylene-3-Indanone End-Cap Engineering for Fused-Ring Electron Acceptor-Based High-Performance Organic Photovoltaics. Cell Reports Physical Science, 2021, 2, 100292.	5.6	38
30	Enhanced Electron Transport and Heat Transfer Boost Light Stability of Ternary Organic Photovoltaic Cells Incorporating Nonâ€Fullerene Small Molecule and Polymer Acceptors. Advanced Electronic Materials, 2019, 5, 1900497.	5.1	37
31	Highly Crystalline Near-Infrared Acceptor Enabling Simultaneous Efficiency and Photostability Boosting in High-Performance Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 48095-48102.	8.0	30
32	ITCâ€2Cl: A Versatile Middleâ€Bandgap Nonfullerene Acceptor for Highâ€Efficiency Panchromatic Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900377.	5.8	29
33	Deciphering the Role of Fluorination: Morphological Manipulation Prompts Charge Separation and Reduces Carrier Recombination in Allâ€5mallâ€Molecule Photovoltaics. Solar Rrl, 2020, 4, 1900528.	5.8	27
34	Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 9587-9594.	8.0	25
35	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	11.9	23
36	Small molecule donors based on benzodithiophene and diketopyrrolopyrrole compatible with both fullerene and non-fullerene acceptors. Journal of Materials Chemistry C, 2018, 6, 5843-5848.	5.5	22

Cenqi Yan

#	Article	IF	CITATIONS
37	Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.	5.8	21
38	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	5.8	21
39	Fine-tuning solid state packing and significantly improving photovoltaic performance of conjugated polymers through side chain engineering via random polymerization. Journal of Materials Chemistry A, 2017, 5, 5585-5593.	10.3	20
40	Copper phosphotungstate as low cost, solution-processed, stable inorganic anode interfacial material enables organic photovoltaics with over 18% efficiency. Nano Energy, 2022, 94, 106923.	16.0	20
41	Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 10901-10907.	5.5	19
42	Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments, 2016, 128, 226-234.	3.7	18
43	Chlorination Strategyâ€Induced Abnormal Nanomorphology Tuning in Highâ€Efficiency Organic Solar Cells: A Study of Phenylâ€Substituted Benzodithiopheneâ€Based Nonfullerene Acceptors. Solar Rrl, 2019, 3, 1900262.	5.8	17
44	Recent progress of metal-halide perovskite-based tandem solar cells. Materials Chemistry Frontiers, 2021, 5, 4538-4564.	5.9	15
45	Ladder-type nonacyclic indacenodithieno[3,2-b]indole for highly efficient organic field-effect transistors and organic photovoltaics. Journal of Materials Chemistry C, 2017, 5, 8988-8998.	5.5	14
46	Fluorinated oligothiophene donors for high-performance nonfullerene small-molecule organic solar cells. Sustainable Energy and Fuels, 2020, 4, 2680-2685.	4.9	12
47	Pairing 1D/2D-conjugation donors/acceptors towards high-performance organic solar cells. Materials Chemistry Frontiers, 2019, 3, 276-283.	5.9	9
48	Functionalizing tetraphenylpyrazine with perylene diimides (PDIs) as high-performance nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 14563-14570.	5.5	9
49	Progress in Organic Photodiodes through Physical Process Insights. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	9
50	A novel hole extraction layer to enhance the performance of inverted organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25385-25390.	10.3	7