
Kyle D Mansfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5028447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell, 2005, 7, 77-85.	16.8	1,764
2	Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism, 2005, 1, 401-408.	16.2	1,321
3	Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metabolism, 2005, 1, 393-399.	16.2	566
4	Multiple Factors Affecting Cellular Redox Status and Energy Metabolism Modulate Hypoxia-Inducible Factor Prolyl Hydroxylase Activity In Vivo and In Vitro. Molecular and Cellular Biology, 2007, 27, 912-925.	2.3	295
5	Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species. Journal of Applied Physiology, 2004, 97, 1358-1366.	2.5	96
6	The ribonome: a dominant force in coâ€ordinating gene expression. Biology of the Cell, 2009, 101, 169-181.	2.0	95
7	Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation. Nucleic Acids Research, 2012, 40, 2734-2746.	14.5	95
8	<i>N</i> ⁶ -methyladenosine is required for the hypoxic stabilization of specific mRNAs. Rna, 2017, 23, 1444-1455.	3.5	92
9	<scp>RNA</scp> methyltransferase <scp>METTL16</scp> : Targets and function. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1681.	6.4	47
10	Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS ONE, 2020, 15, e0227647.	2.5	43
11	Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase $\widehat{a}\in 3$ activation. Journal of Cellular Physiology, 2007, 210, 609-615.	4.1	30
12	N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget, 2018, 9, 31231-31243.	1.8	28
13	Hypoxia and Hypoglycemia synergistically regulate mRNA stability. RNA Biology, 2017, 14, 938-951.	3.1	15
14	Hypoxic stabilization of mRNA is HIF-independent but requires mtROS. Cellular and Molecular Biology Letters, 2018, 23, 48.	7.0	12