
Qinghao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5028217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews, 2020, 120, 6820-6877.	47.7	891
2	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603.	39.5	572
3	Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nature Communications, 2017, 8, 2091.	12.8	469
4	Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Materials, 2018, 14, 1-7.	18.0	307
5	High Reversibility of Lattice Oxygen Redox Quantified by Direct Bulk Probes of Both Anionic and Cationic Redox Reactions. Joule, 2019, 3, 518-541.	24.0	225
6	Enabling Stable Cycling of 4.2 V Highâ€Voltage Allâ€Solidâ€State Batteries with PEOâ€Based Solid Electrolyte. Advanced Functional Materials, 2020, 30, 1909392.	14.9	204
7	An In Situ Formed Surface Coating Layer Enabling LiCoO ₂ with Stable 4.6 V Highâ€Voltage Cycle Performances. Advanced Energy Materials, 2020, 10, 2001413.	19.5	201
8	Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes. ACS Applied Materials & Interfaces, 2020, 12, 2319-2326.	8.0	186
9	Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. Frontiers in Chemistry, 2018, 6, 616.	3.6	175
10	A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy, 2019, 55, 143-150.	16.0	142
11	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nature Communications, 2021, 12, 5267.	12.8	122
12	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie - International Edition, 2019, 58, 4323-4327.	13.8	114
13	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€ion Battery Cathode. Angewandte Chemie - International Edition, 2018, 57, 8178-8183.	13.8	109
14	High-efficiency <i>in situ</i> resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. Review of Scientific Instruments, 2017, 88, 033106.	1.3	107
15	Both Cationic and Anionic Co-(de)intercalation into a Metal-Oxide Material. Joule, 2018, 2, 1134-1145.	24.0	107
16	Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy. Journal Physics D: Applied Physics, 2016, 49, 413003.	2.8	90
17	Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Science Advances, 2020, 6, eaaw3871.	10.3	82
18	Spectroscopic Signature of Oxidized Oxygen States in Peroxides. Journal of Physical Chemistry Letters, 2018, 9, 6378-6384.	4.6	80

Qinghao Li

#	Article	IF	CITATIONS
19	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â°'<i>x</i>} Ni _{<i>x</i>} O _{3â°'<i>î´</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 19691-19695.	13.8	80
20	Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006629.	21.0	80
21	Reacquainting the Electrochemical Conversion Mechanism of FeS ₂ Sodium-Ion Batteries by Operando Magnetometry. Journal of the American Chemical Society, 2021, 143, 12800-12808.	13.7	69
22	An Ordered Ni ₆ â€Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode. Advanced Materials, 2019, 31, e1903483.	21.0	65
23	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	10.3	63
24	Deciphering the Oxygen Absorption Preâ€edge: A Caveat on its Application for Probing Oxygen Redox Reactions in Batteries. Energy and Environmental Materials, 2021, 4, 246-254.	12.8	56
25	Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. Joule, 2021, 5, 720-736.	24.0	56
26	ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector. Nanoscale Research Letters, 2013, 8, 415.	5.7	55
27	Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 20795-20803.	10.3	54
28	Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, .	11.0	53
29	Fingerprint Oxygen Redox Reactions in Batteries through High-Efficiency Mapping of Resonant Inelastic X-ray Scattering. Condensed Matter, 2019, 4, 5.	1.8	44
30	Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction. Applied Physics Letters, 2013, 103, .	3.3	33
31	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€lon Battery Cathode. Angewandte Chemie, 2018, 130, 8310-8315.	2.0	23
32	Effect of simulated tidal cycle on DOM, nitrogen and phosphorus release from sediment in Dagu River-Jiaozhou Bay estuary. Science of the Total Environment, 2021, 783, 147158.	8.0	21
33	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie, 2019, 131, 4367-4371.	2.0	13
34	Interfacial properties in energy storage systems studied by soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering. Journal of Chemical Physics, 2020, 152, 140901.	3.0	13
35	Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering. Journal of Visualized Experiments, 2018, , .	0.3	10
36	Dualâ€Đefects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{3â^'<i>δ</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 19859-19863.	2.0	5

Qinghao Li

#	Article	IF	CITATIONS
37	Lithiumâ€ion Batteries: Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€ion Batteries (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170093.	21.0	4
38	Structure, band gap, and Mn-related mid-gap states in epitaxial single crystal (Zn1â^'xMgx)1â^'yMnyO thin films. Journal of Applied Physics, 2013, 113, 173701.	2.5	1
39	AN EFFECTIVE-SUBSTRATE METHOD TO INVESTIGATE AN IRON NATIVE OXIDE LAYER ON AN IRON SUBSTRATE BY SPECTROSCOPIC ELLIPSOMETRY. Modern Physics Letters B, 2013, 27, 1350044.	1.9	1