Rodger A Liddle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5028174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initiation and severity of experimental pancreatitis are modified by phosphate. American Journal of Physiology - Renal Physiology, 2022, 322, G561-G570.	3.4	2
2	Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice. JCI Insight, 2022, 7, .	5.0	26
3	lldr1 gene deletion protects against diet-induced obesity and hyperglycemia. PLoS ONE, 2022, 17, e0270329.	2.5	1
4	Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress. Journal of Biological Chemistry, 2021, 296, 100171.	3.4	86
5	Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathologica, 2021, 141, 547-564.	7.7	23
6	Chemical pancreatectomy: an unconventional approach to preventing autodigestion in pancreatitis. Journal of Clinical Investigation, 2021, 131, .	8.2	2
7	The Role of Phosphate in Alcohol-Induced Experimental Pancreatitis. Gastroenterology, 2021, 161, 982-995.e2.	1.3	17
8	Pressureâ€sensing Piezo1: the eyes have it. Journal of Physiology, 2021, 599, 365-366.	2.9	0
9	Calcium in Pancreatitis … Immune Cells, Too?. Function, 2020, 2, zqaa030.	2.3	1
10	TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. Journal of Clinical Investigation, 2020, 130, 2527-2541.	8.2	119
11	Neuropods. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 739-747.	4.5	41
12	Parkinson's disease from the gut. Brain Research, 2018, 1693, 201-206.	2.2	145
13	Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis. Nature Communications, 2018, 9, 1715.	12.8	144
14	Interactions of Gut Endocrine Cells withÂEpitheliumÂand Neurons. , 2018, 8, 1019-1030.		13
15	Location, Location, Location It Is Important in Pancreatitis, Too. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 6-7.	4.5	1
16	α-Synuclein in gut endocrine cells and its implications for Parkinson's disease. JCI Insight, 2017, 2, .	5.0	164
17	Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Scientific Reports, 2016, 6, 26894.	3.3	58
18	Mechanism, assessment and management of pain in chronic pancreatitis: Recommendations of a multidisciplinary study group. Pancreatology, 2016, 16, 83-94.	1.1	74

Rodger A Liddle

#	Article	IF	CITATIONS
19	Endogenous elevation of plasma cholecystokinin does not prevent gallstones. European Journal of Clinical Investigation, 2015, 45, 237-246.	3.4	8
20	Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell. Journal of Visualized Experiments, 2015, , e52918.	0.3	5
21	Acinar Cell Production of Leukotriene B4 Contributes to Development of Neurogenic Pancreatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 75-86.	4.5	12
22	ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells. Human Molecular Genetics, 2015, 24, 609-624.	2.9	58
23	Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. Journal of Clinical Investigation, 2015, 125, 782-786.	8.2	333
24	An Enteroendocrine Cell – Enteric Glia Connection Revealed by 3D Electron Microscopy. PLoS ONE, 2014, 9, e89881.	2.5	179
25	Ethanol contributes to neurogenic pancreatitis by activation of TRPV1. FASEB Journal, 2014, 28, 891-896.	0.5	23
26	Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion. Journal of Clinical Investigation, 2013, 123, 3343-3352.	8.2	43
27	Pancreatic secretory trypsin inhibitor I reduces the severity of chronic pancreatitis in mice overexpressing interleukin-1β in the pancreas. American Journal of Physiology - Renal Physiology, 2012, 302, G535-G541.	3.4	11
28	The Challenging Task of Treating Painful Chronic Pancreatitis. Gastroenterology, 2012, 143, 533-535.	1.3	16
29	Amino acids stimulate cholecystokinin release through the Ca ²⁺ -sensing receptor. American Journal of Physiology - Renal Physiology, 2011, 300, G528-G537.	3.4	158
30	Axonâ€Like Basal Processes in Enteroendocrine Cells: Characteristics and Potential Targets. Clinical and Translational Science, 2011, 4, 387-391.	3.1	32
31	Characterization of basal pseudopod-like processes in ileal and colonic PYY cells. Journal of Molecular Histology, 2011, 42, 3-13.	2.2	71
32	The enteroendocrine PYY cell interacts with neurites of the enteric nervous system through axonâ€ŀike basal process. FASEB Journal, 2011, 25, 1070.1.	0.5	0
33	Protection Against Chronic Pancreatitis and Pancreatic Fibrosis in Mice Overexpressing Pancreatic Secretory Trypsin Inhibitor. Pancreas, 2010, 39, e24-e30.	1.1	23
34	Pseudopod-like basal cell processes in intestinal cholecystokinin cells. Cell and Tissue Research, 2010, 341, 289-297.	2.9	38
35	Pharmacologic Disruption of TRPV1-Expressing Primary Sensory Neurons But Not Genetic Deletion of TRPV1 Protects Mice Against Pancreatitis. Pancreas, 2008, 36, 394-401.	1.1	27
36	The role of Transient Receptor Potential Vanilloid 1 (TRPV1) channels in pancreatitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 869-878.	3.8	56

RODGER A LIDDLE

#	Article	IF	CITATIONS
37	Lack of Trophic Pancreatic Effects in Humans With Long-term Administration of Ximelagatran. Pancreas, 2006, 32, 205-210.	1.1	4
38	Transgenic expression of pancreatic secretory trypsin inhibitor-l ameliorates secretagogue-induced pancreatitis in mice. Gastroenterology, 2005, 128, 717-727.	1.3	80
39	Calcineurin mediates pancreatic growth in protease inhibitor-treated mice. American Journal of Physiology - Renal Physiology, 2004, 286, G784-G790.	3.4	35
40	Neurogenic inflammation and pancreatitis. Pancreatology, 2004, 4, 551-560.	1.1	77
41	Susceptibility to pancreatitis related to PSTI/SPINK1 expression. Gastroenterology Clinics of North America, 2004, 33, 807-816.	2.2	5
42	On the Measurement of Cholecystokinin. Clinical Chemistry, 1998, 44, 903-904.	3.2	8
43	Inhibition of gastric emptying in response to intestinal lipid is dependent on chylomicron formation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1834-R1838.	1.8	51
44	Distribution and Localization of a Novel Cholecystokinin-Releasing Factor in the Rat Gastrointestinal Tract*. Endocrinology, 1997, 138, 5550-5554.	2.8	19
45	Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes. American Journal of Physiology - Renal Physiology, 1997, 273, G1108-G1117.	3.4	41
46	Distribution and Localization of a Novel Cholecystokinin-Releasing Factor in the Rat Gastrointestinal Tract. Endocrinology, 1997, 138, 5550-5554.	2.8	11
47	Bioassay of plasma cholecystokinin in rats: Effects of food, trypsin inhibitor, and alcohol. Gastroenterology, 1984, 87, 542-549.	1.3	444