Madhavi Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5027652/publications.pdf

Version: 2024-02-01

354 papers 32,879 citations

99 h-index 166 g-index

362 all docs $\begin{array}{c} 362 \\ \text{docs citations} \end{array}$

times ranked

362

27511 citing authors

#	Article	IF	CITATIONS
1	Grid-Connected Energy Storage Systems: State-of-the-Art and Emerging Technologies. Proceedings of the IEEE, 2023, 111, 397-420.	16.4	37
2	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2101474.	11.1	140
3	Green Recycling Methods to Treat Lithiumâ€lon Batteries Eâ€Waste: A Circular Approach to Sustainability. Advanced Materials, 2022, 34, e2103346.	11.1	148
4	Direct reuse of electronic plastic scraps from computer monitor and keyboard to direct stem cell growth and differentiation. Science of the Total Environment, 2022, 807, 151085.	3.9	7
5	Enhancing the polymer electrolyte–Li metal interface on high-voltage solid-state batteries with Li-based additives inspired by the surface chemistry of Li ₇ La ₃ Zr ₂ O ₁₂ . Journal of Materials Chemistry A, 2022, 10. 2352-2361.	5. 2	10
6	Anode Materials for Rechargeable Aqueous Al″on Batteries: Progress and Prospects. ChemNanoMat, 2022, 8, .	1.5	4
7	Enabling Al-metal anodes for aqueous electrochemical cells by using low-cost eutectic mixtures as artificial protective interphase. Chemical Engineering Journal, 2022, 435, 134742.	6.6	16
8	Green Closed-Loop Cathode Regeneration from Spent NMC-Based Lithium-Ion Batteries through Bioleaching. ACS Sustainable Chemistry and Engineering, 2022, 10, 2634-2644.	3.2	32
9	Ultrafast Crystallization of Ordered Mesoporous Metal Oxides and Carbon from Block Copolymer Selfâ€Assembly and Joule Heating. Advanced Materials Interfaces, 2022, 9, .	1.9	6
10	Modulation of Single Atomic Co and Fe Sites on Hollow Carbon Nanospheres as Oxygen Electrodes for Rechargeable Zn–Air Batteries. Small Methods, 2021, 5, e2000751.	4.6	178
11	Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. Journal of Cleaner Production, 2021, 280, 124242.	4.6	71
12	Taguchi optimization design of diameter-controlled synthesis of multi walled carbon nanotubes for the adsorption of Pb(II) and Ni(II) from chemical industry wastewater. Chemosphere, 2021, 266, 128937.	4.2	83
13	Chelating Ligands as Electrolyte Solvent for Rechargeable Zinc-Ion Batteries. Chemistry of Materials, 2021, 33, 1330-1340.	3.2	37
14	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie, 2021, 133, 7289-7295.	1.6	59
15	Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-lon Batteries at a High Pulp Density. ACS Sustainable Chemistry and Engineering, 2021, 9, 3060-3069.	3.2	64
16	Binary NaClâ€"NaF and NaClâ€"LiF Flux-Mediated Growth of Mixed-Valence (V ^{3+/4+}) NASICON-Type Na ₃ V ₂ (PO ₄) ₂ F _{2.5} O _{0.5} and Na _{2.4} Li _{0.6} V ₂ O _{O_O}}}	2.5 .5	10
17	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 7213-7219.	7.2	209
18	Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries. ACS Energy Letters, 2021, 6, 1773-1785.	8.8	173

#	Article	IF	CITATIONS
19	A new insight into Li-staging, in-situ electrochemical exfoliation, and superior Li storage characteristics of highly crystalline few-layered graphene. Journal of Energy Storage, 2021, 41, 102908.	3.9	5
20	Modulating Anion Redox Activity of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ through Strong Sr–O Bonds toward Achieving Stable Li-Ion Half-/Full-Cell Performance. ACS Applied Energy Materials, 2021, 4, 11234-11247.	2.5	5
21	A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 2021, 282, 130944.	4.2	122
22	An original recycling method for Li-ion batteries through large scale production of Metal Organic Frameworks. Journal of Hazardous Materials, 2020, 385, 121603.	6.5	40
23	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020, 2, 248-263.	3.9	110
24	Repurposing of Fruit Peel Waste as a Green Reductant for Recycling of Spent Lithium-Ion Batteries. Environmental Science & Env	4.6	81
25	Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 2020, 142, 15295-15304.	6.6	188
26	Boosting Zn-Ion Storage Performance of Bronze-Type VO ₂ <i>via</i> Ni-Mediated Electronic Structure Engineering. ACS Applied Materials & Electronic Structure Engineering Electronic Structure Engineering Electronic Structure Electronic Structure Electronic Electronic Structure Electronic Ele	4.0	70
27	Co ₃ O ₄ Nanosheets as Battery-Type Electrode for High-Energy Li-lon Capacitors: A Sustained Li-Storage <i>via</i> Conversion Pathway. ACS Nano, 2020, 14, 10648-10654.	7.3	52
28	Mesoporous Titanium Oxynitride Monoliths from Block Copolymer-Directed Self-Assembly of Metal–Urea Additives. Langmuir, 2020, 36, 10803-10810.	1.6	11
29	Rechargeable Al-Metal Aqueous Battery Using NaMnHCF as a Cathode: Investigating the Role of Coated-Al Anode Treatments for Superior Battery Cycling Performance. ACS Applied Energy Materials, 2020, 3, 8627-8635.	2.5	42
30	Progress and Challenges on Battery Waste Management : A Critical Review. ChemistrySelect, 2020, 5, 6182-6193.	0.7	23
31	Recycling of cathode from spent lithium iron phosphate batteries. Journal of Hazardous Materials, 2020, 399, 123068.	6.5	101
32	An Insight into the Electrochemical Activity of Al-doped V ₂ O ₃ . Journal of the Electrochemical Society, 2020, 167, 100514.	1.3	13
33	Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12716-12722.	5.2	50
34	Multiscalar Investigation of FeVO ₄ Conversion Cathode for a Low Concentration Zn(CF ₃ SO ₃) ₂ Rechargeable Znâ€lon Aqueous Battery. Batteries and Supercaps, 2020, 3, 619-630.	2.4	18
35	Electrochemical Performance of Bâ€Type Vanadium Dioxide as a Sodiumâ€ion Battery Cathode: A Combined Experimental and Theoretical Study. ChemElectroChem, 2020, 7, 3151-3159.	1.7	4
36	Supersaturated "water-in-salt―hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation. Journal of Power Sources, 2020, 472, 228558.	4.0	26

#	Article	IF	Citations
37	Targeted removal of aluminium and copper in Li-ion battery waste solutions by selective precipitation as valuable porous materials. Materials Letters, 2020, 268, 127564.	1.3	6
38	Green Synthesis of a Nanocrystalline Tin Disulfide-Reduced Graphene Oxide Anode from Ammonium Peroxostannate: a Highly Stable Sodium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 5485-5494.	3.2	17
39	Combining Organic and Inorganic Wastes to Form Metal–Organic Frameworks. Materials, 2020, 13, 441.	1.3	12
40	Electrochemical deposition of highly porous reduced graphene oxide electrodes for Li-ion capacitors. Electrochimica Acta, 2020, 337, 135861.	2.6	10
41	Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22862-22872.	4.0	32
42	Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chemical Engineering Journal, 2020, 396, 125221.	6.6	94
43	MLi ₂ Ti ₆ O ₁₄ (M = 2Na, Sr, Ba, Pb) Titanate Anodes for Lithium-Ion Capacitors (LICs). ECS Meeting Abstracts, 2020, MA2020-02, 641-641.	0.0	0
44	Electronic and Geometric Structures of Rechargeable Lithium Manganese Sulfate Li ₂ Mn(SO ₄) ₂ Cathode. ACS Omega, 2019, 4, 11338-11345.	1.6	2
45	Surface-Modified Hollow Ternary NiCo ₂ P _{<i>x</i>} Catalysts for Efficient Electrochemical Water Splitting and Energy Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39798-39808.	4.0	21
46	Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zincâ€Ion Batteries. ChemSusChem, 2019, 12, 4889-4900.	3.6	120
47	Layered VOPO ₄ as a Cathode Material for Rechargeable Zinc-lon Battery: Effect of Polypyrrole Intercalation in the Host and Water Concentration in the Electrolyte. ACS Applied Energy Materials, 2019, 2, 8667-8674.	2.5	90
48	Amorphous Fe–Ni–P–B–O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2019, 13, 12969-12979.	7.3	151
49	Narsarsukite Na2TiOSi4O10 as a Low Voltage Silicate Anode for Rechargeable Li-lon and Na-lon Batteries. ACS Applied Energy Materials, 2019, 2, 2350-2355.	2.5	2
50	Electrochemically Induced Amorphization and Unique Lithium and Sodium Storage Pathways in FeSbO4 Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 20082-20090.	4.0	14
51	Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23972-23981.	4.0	27
52	Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14145-14152.	5.2	21
53	High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy, 2019, 62, 94-102.	8.2	209
54	Electrochemistry-related aspects of safety of graphene-based non-aqueous electrochemical supercapacitors: a case study with MgO-decorated few-layer graphene as an electrode material. New Journal of Chemistry, 2019, 43, 9793-9801.	1.4	13

#	Article	IF	Citations
55	Superior Li-ion storage of VS ₄ nanowires anchored on reduced graphene. Nanoscale, 2019, 11, 9556-9562.	2.8	35
56	Investigation of the Electrochemical and Thermal Stability of an Ionic Liquid Based Na _{0.6} Co _{0.1} Mn _{0.9} O ₂ /Na _{2.55} V ₆ O <sodium-ion 166,="" 2019,="" a944-a952.<="" electrochemical="" full-cell.="" journal="" of="" society,="" td="" the=""><td>:suuto>16<!--</td--><td>sab></td></td></sodium-ion>	:suuto>16 </td <td>sab></td>	sab>
57	Hollow Mesoporous Co(PO ₃) ₂ @Carbon Polyhedra as High Performance Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 8599-8606.	1.5	27
58	Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Research, 2019, 12, 1347-1353.	5.8	95
59	1.3â€V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries. Chemical Engineering Journal, 2019, 370, 742-748.	6.6	32
60	Investigating FeVO4 as a cathode material for aqueous aluminum-ion battery. Journal of Power Sources, 2019, 426, 151-161.	4.0	80
61	From Electrodes to Electrodes: Building Highâ€Performance Liâ€Ion Capacitors and Batteries from Spent Lithiumâ€Ion Battery Carbonaceous Materials. ChemElectroChem, 2019, 6, 1407-1412.	1.7	42
62	Water in Rechargeable Multivalentâ€lon Batteries: An Electrochemical Pandora's Box. ChemSusChem, 2019, 12, 379-396.	3.6	62
63	All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity. Journal of Power Sources, 2019, 414, 96-102.	4.0	66
64	Batteries: Progress in Rechargeable Aqueous Zinc―and Aluminumâ€Ion Battery Electrodes: Challenges and Outlook (Adv. Sustainable Syst. 1/2019). Advanced Sustainable Systems, 2019, 3, 1970004.	2.7	13
65	Progress in Rechargeable Aqueous Zinc―and Aluminumâ€lon Battery Electrodes: Challenges and Outlook. Advanced Sustainable Systems, 2019, 3, 1800111.	2.7	147
66	High power Na-ion capacitor with TiS2 as insertion host. Scripta Materialia, 2019, 161, 54-57.	2.6	18
67	Citric Acid Assisted Solid State Synthesis of V ₂ O ₃ , V ₂ /Graphene Composites for Liâ€ion Battery Anode Applications. ChemElectroChem, 2019, 6, 493-503.	1.7	27
68	Graphene Oxideâ€Supported βâ€Tin Telluride Composite for Sodium―and Lithiumâ€lon Battery Anodes. Energy Technology, 2018, 6, 127-133.	1.8	35
69	High-Crystallinity Urchin-like VS ₄ Anode for High-Performance Lithium-Ion Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14727-14734.	4.0	74
70	Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode. Langmuir, 2018, 34, 2741-2747.	1.6	20
71	High energy Li-ion capacitor and battery using graphitic carbon spheres as an insertion host from cooking oil. Journal of Materials Chemistry A, 2018, 6, 3242-3248.	5.2	48
72	Two Dimensional TiS ₂ as a Promising Insertion Anode for Naâ€lon Battery. ChemistrySelect, 2018, 3, 524-528.	0.7	47

#	Article	IF	Citations
73	Elongated graphitic hollow nanofibers from vegetable oil as prospective insertion host for constructing advanced high energy Li-lon capacitor and battery. Carbon, 2018, 134, 9-14.	5.4	29
74	Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na- and Li-ion battery anodes by hydrogen peroxide sol gel processing. Journal of Colloid and Interface Science, 2018, 512, 165-171.	5.0	29
75	Hierarchical three-dimensional Fe3O4@porous carbon matrix/graphene anodes for high performance lithium ion batteries. Electrochimica Acta, 2018, 260, 965-973.	2.6	61
76	Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 363.	3.1	26
77	Synthesis and physicochemical characterization of room temperature ionic liquids and their application in sodium ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 29412-29422.	1.3	21
78	Beyond intercalation based sodium-ion batteries: the role of alloying anodes, efficient sodiation mechanisms and recent progress. Sustainable Energy and Fuels, 2018, 2, 2567-2582.	2.5	27
79	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	14.4	65
80	CoSe ₂ -Decorated NbSe ₂ Nanosheets Fabricated via Cation Exchange for Li Storage. ACS Applied Materials & Storage.	4.0	18
81	Exploring two dimensional Co0.33In2.67S2.29Se1.71 as alloy type negative electrode for Li-ion battery with olivine LiFePO4 cathode. Materials Today Energy, 2018, 9, 19-26.	2.5	2
82	Identifying the Origin and Contribution of Surface Storage in TiO ₂ (B) Nanotube Electrode by In Situ Dynamic Valence State Monitoring. Advanced Materials, 2018, 30, e1802200.	11.1	90
83	Performance-improved Li-O ₂ batteries by tailoring the phases of Mo _x C porous nanorods as an efficient cathode. Nanoscale, 2018, 10, 14877-14884.	2.8	28
84	Fe ₂ Mo ₃ O ₈ /exfoliated graphene oxide: solid-state synthesis, characterization and anodic application in Li-ion batteries. New Journal of Chemistry, 2018, 42, 12817-12823.	1.4	17
85	Unusual Liâ€Storage Behaviour of Twoâ€Dimensional ReS ₂ Single Crystals. Batteries and Supercaps, 2018, 1, 69-74.	2.4	4
86	Morphology controlled lithium storage in Li ₃ VO ₄ anodes. Journal of Materials Chemistry A, 2018, 6, 456-463.	5.2	46
87	Experimental Elucidation of a Graphenothermal Reduction Mechanism of Fe ₂ O ₃ : An Enhanced Anodic Behavior of an Exfoliated Reduced Graphene Oxide/Fe ₃ O ₄ Composite in Li-lon Batteries. Journal of Physical Chemistry C, 2017. 121. 3778-3789.	1.5	36
88	Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chemical Engineering Journal, 2017, 316, 506-513.	6.6	90
89	Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors. Electrochimica Acta, 2017, 228, 131-138.	2.6	66
90	Nanostructured intermetallic FeSn2-carbonaceous composites as highly stable anode for Na-ion batteries. Journal of Power Sources, 2017, 343, 296-302.	4.0	34

#	Article	IF	CITATIONS
91	In situ X-ray absorption near edge structure studies and charge transfer kinetics of Na ₆ [V ₁₀ O ₂₈] electrodes. Physical Chemistry Chemical Physics, 2017, 19, 3358-3365.	1.3	31
92	Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 4949-4961.	5.2	129
93	Morphology controlled Si-modified LiNi 0.5 Mn 1.5 O 4 microspheres as high performance high voltage cathode materials in lithium ion batteries. Journal of Power Sources, 2017, 346, 89-96.	4.0	45
94	Design of 3-Dimensional Hierarchical Architectures of Carbon and Highly Active Transition Metals (Fe,) Tj ETQq0 (2017, 29, 1665-1675.	0 0 rgBT /0 3.2	Overlock 10 ⁻ 104
95	Unveiling two-dimensional TiS ₂ as an insertion host for the construction of high energy Li-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 9177-9181.	5.2	76
96	Large-scale synthesis of highly uniform Fe $1\hat{a}^{x}$ S nanostructures as a high-rate anode for sodium ion batteries. Nano Energy, 2017, 37, 81-89.	8.2	161
97	Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Liâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1602607.	10.2	122
98	Novel Preparation of Nâ€Doped SnO ₂ Nanoparticles via Laserâ€Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties. Advanced Materials, 2017, 29, 1603286.	11.1	132
99	Exploring Highâ€Energy Liâ€I(r)on Batteries and Capacitors with Conversionâ€Type Fe ₃ O ₄ â€rGO as the Negative Electrode. ChemElectroChem, 2017, 4, 2626-2633.	1.7	10
100	Fabrication of High Energy Li–Ion Capacitors from Orange Peel Derived Porous Carbon. ChemistrySelect, 2017, 2, 5051-5058.	0.7	17
101	Exploring the influence of iron substitution in lithium rich layered oxides Li ₂ Ru _{1â^x} Fe _x O ₃ : triggering the anionic redox reaction. Journal of Materials Chemistry A, 2017, 5, 14387-14396.	5.2	18
102	βâ€Co(OH) ₂ Nanosheets: A Superior Pseudocapacitive Electrode for Highâ€Energy Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 2127-2133.	1.7	40
103	Nanoscale ion intermixing induced activation of Fe ₂ O ₃ /MnO ₂ composites for application in lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 8510-8518.	5.2	57
104	Highly Stable Intermetallic FeSn ₂ â€Graphite Composite Anode for Sodiumâ€ion Batteries. ChemElectroChem, 2017, 4, 1932-1936.	1.7	21
105	Solvothermal synthesis of Li3VO4: Morphology control and electrochemical performance as anode for lithium-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 22167-22174.	3.8	17
106	Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium. Journal of Materials Chemistry A, 2017, 5, 7507-7515.	5.2	69
107	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	10.2	486
108	Melt-Spun Fe–Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 39399-39406.	4.0	48

#	Article	IF	CITATIONS
109	Polymeric Nanomaterials Based on the Buckybowl Motif: Synthesis through Ring-Opening Metathesis Polymerization and Energy Storage Applications. ACS Macro Letters, 2017, 6, 1212-1216.	2.3	32
110	Structural, Thermal, and Electrochemical Studies of Novel Li ₂ Co _{<i>x</i>} Mn _{1â€"<i>x</i>} (SO ₄) ₂ Bimetallic Sulfates. Journal of Physical Chemistry C, 2017, 121, 24971-24978.	1.5	3
111	High energy Li-ion capacitors using two-dimensional TiSe _{0.6} S _{1.4} as insertion host. Journal of Materials Chemistry A, 2017, 5, 19819-19825.	5.2	31
112	Ex situ XAS investigation of effect of binders on electrochemical performance of Licsub>2Fe(SO ₄) ₂ cathode. Journal of Materials Chemistry A, 2017, 5, 19963-19971.	5.2	4
113	Interfacial Phenomena/Capacities Beyond Conversion Reaction Occurring in Nanoâ€sized Transitionâ€Metalâ€Oxideâ€Based Negative Electrodes in Lithiumâ€Ion Batteries: A Review. ChemElectroChem, 2017, 4, 2727-2754.	1.7	48
114	Evaluation of electrochemical performances of ZnFe ₂ 0 ₃ nanoparticles prepared by laser pyrolysis. New Journal of Chemistry, 2017, 41, 9236-9243.	1.4	16
115	Practical Li-lon Battery Assembly with One-Dimensional Active Materials. Journal of Physical Chemistry Letters, 2017, 8, 4031-4037.	2.1	16
116	Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy, 2017, 39, 111-139.	8.2	214
117	Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes. Beilstein Journal of Nanotechnology, 2017, 8, 2032-2044.	1.5	7
118	A chemically bonded NaTi ₂ (PO ₄) ₃ /rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 17506-17516.	5.2	80
119	Exploring Anatase TiO ₂ Nanofibers as New Cathode for Constructing 1.6 V Class "Rockingâ€Chair―Type Liâ€ion Cells. Particle and Particle Systems Characterization, 2016, 33, 306-310.	1.2	13
120	3D Interconnected Porous Graphene Sheets Loaded with Cobalt Oxide Nanoparticles for Lithiumâ€lon Battery Anodes. Energy Technology, 2016, 4, 816-822.	1.8	7
121	A Highâ€Energy Lithiumâ€lon Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridineâ€Derived Porous Nitrogenâ€Doped Carbon Cathode. Advanced Functional Materials, 2016, 26, 3082-3093.	7.8	330
122	Mechanism of Na ⁺ Insertion in Alkali Vanadates and Its Influence on Battery Performance. Advanced Energy Materials, 2016, 6, 1502336.	10.2	26
123	$(0\ 0\ 1)$ faceted mesoporous anatase TiO 2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn 2 O 4. Energy Storage Materials, 2016, 3, 106-112.	9.5	16
124	Graphene based nanocomposites for alloy (SnO2), and conversion (Fe3O4) type efficient anodes for Li-ion battery applications. Composites Science and Technology, 2016, 130, 88-95.	3.8	14
125	Research progress in Na-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 7538-7548.	5.2	131
126	Pre-lithiated Li \times Mn 2 O 4: A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery. Electrochimica Acta, 2016, 208, 225-230.	2.6	39

#	Article	IF	CITATIONS
127	A Multiâ€Walled Carbon Nanotube Core with Graphene Oxide Nanoribbon Shell as Anode Material for Sodium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600357.	1.9	20
128	Synthesis of SnS2 single crystals and its Li-storage performance with LiMn2O4 cathode. Applied Materials Today, 2016, 5, 68-72.	2.3	19
129	Phase transition of hollow-porous \hat{l}_{\pm} -Fe ₂ O ₃ microsphere based anodes for lithium ion batteries during high rate cycling. Journal of Materials Chemistry A, 2016, 4, 16569-16575.	5.2	54
130	Silicon Doping of High Voltage Spinel LiNi 0.5 Mn 1.5 O 4 towards Superior Electrochemical Performance of Lithium Ion Batteries. Electrochimica Acta, 2016, 213, 904-910.	2.6	34
131	TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. Journal of Power Sources, 2016, 327, 171-177.	4.0	93
132	Study of lithium conducting single ion conductor based on polystyrene sulfonate for lithium battery application. Polymer, 2016, 99, 748-755.	1.8	28
133	Recent Advancements in Allâ€Vanadium Redox Flow Batteries. Advanced Materials Interfaces, 2016, 3, 1500309.	1.9	351
134	Controllable Preparation of Square Nickel Chalcogenide (NiS and NiSe ₂) Nanoplates for Superior Li/Na Ion Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 25261-25267.	4.0	185
135	High energy Li-ion capacitors with conversion type Mn ₃ O ₄ particulates anchored to few layer graphene as the negative electrode. Journal of Materials Chemistry A, 2016, 4, 15134-15139.	5.2	39
136	Overlithiated Li $1+x$ Ni 0.5 Mn 1.5 O 4 in all one dimensional architecture with conversion type $\hat{1}\pm$ -Fe 2 O 3 : A new approach to eliminate irreversible capacity loss. Electrochimica Acta, 2016, 215, 647-651.	2.6	39
137	LiVPO ₄ F: A New Cathode for High-Energy Lithium Ion Capacitors. ChemistrySelect, 2016, 1, 3316-3322.	0.7	11
138	Red Mud and Liâ€lon Batteries: A Magnetic Connection. ChemSusChem, 2016, 9, 2193-2200.	3.6	15
139	Synthesis of α-Fe ₂ O ₃ /carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. Journal of Materials Chemistry A, 2016, 4, 18223-18239.	5.2	85
140	A comparative evaluation of differently synthesized high surface area carbons for Li-ion hybrid electrochemical supercapacitor application: Pore size distribution holds the key. Applied Materials Today, 2016, 2, 1-6.	2.3	23
141	P2–Na _{<i>x</i>} Co _{<i>y</i>} Mn _{1–<i>y</i>} O ₂ (<i>y</i> < = Cycling Stability. Chemistry of Materials, 2016, 28, 2041-2051.),) Tj ETQq1 3.2	1 0.78431 154
142	Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy, 2016, 22, 361-395.	8.2	248
143	Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. Journal of Materials Chemistry A, 2016, 4, 5578-5591.	5.2	60
144	The fabrication of LiMn2O4 and Na1.16V3O8 based full cell aqueous rechargeable battery to power portable wearable electronics devices. Materials and Design, 2016, 93, 291-296.	3.3	10

#	Article	IF	CITATIONS
145	Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & Eamp; storage, and water treatment. Chemical Society Reviews, 2016, 45, 1225-1241.	18.7	325
146	Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties. Journal of Power Sources, 2016, 307, 17-24.	4.0	23
147	Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon, 2016, 99, 556-563.	5 . 4	218
148	Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. Nano Energy, 2016, 19, 307-317.	8.2	30
149	Rusted iron wire waste into high performance anode (α-Fe ₂ O ₃) for Li-ion batteries: an efficient waste management approach. Green Chemistry, 2016, 18, 1395-1404.	4.6	39
150	Molten sodium-induced graphitization towards highly crystalline and hierarchical porous graphene frameworks. 2D Materials, 2015, 2, 035016.	2.0	8
151	Energy Storage: Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors (Small 30/2015). Small, 2015, 11, 3720-3720.	5.2	3
152	Note: Electrochemical cell for <i>iin operando</i> ii> X-ray diffraction measurements on a conventional X-ray diffractometer. Review of Scientific Instruments, 2015, 86, 086102.	0.6	10
153	Electrospun Singleâ€Phase Na _{1.2} V ₃ O ₈ Materials with Tunable Morphologies as Cathodes for Rechargeable Lithiumâ€lon Batteries. ChemElectroChem, 2015, 2, 837-846.	1.7	14
154	A Flexible Quasiâ€Solidâ€State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V ₂ O ₅ Nanosheets on Carbon Nanofibers. Advanced Energy Materials, 2015, 5, 1500753.	10.2	198
155	Polycrystalline zinc stannate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14033-14038.	5.2	53
156	High surface area porous carbon for ultracapacitor application by pyrolysis of polystyrene containing pendant carboxylic acid groups prepared via click chemistry. Materials Today Communications, 2015, 4, 166-175.	0.9	14
157	Nanostructured spinel LiNi 0.5 Mn 1.5 O 4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy, 2015, 12, 69-75.	8.2	114
158	Importance of nanostructure for reversible Li-insertion into octahedral sites of LiNi0.5Mn1.5O4 and its application towards aqueous Li-ion chemistry. Journal of Power Sources, 2015, 280, 240-245.	4.0	15
159	Carbon-coated Li $3V2$ (PO 4) 3 as insertion type electrode for lithium-ion hybrid electrochemical capacitors: An evaluation of anode and cathodic performance. Journal of Power Sources, $2015, 281, 310-317$.	4.0	73
160	Fabrication of Spinel One-Dimensional Architectures by Single-Spinneret Electrospinning for Energy Storage Applications. ACS Nano, 2015, 9, 1945-1954.	7.3	349
161	A General Strategy toward Carbon Clothâ€Based Hierarchical Films Constructed by Porous Nanosheets for Superior Photocatalytic Activity. Small, 2015, 11, 2429-2436.	5.2	30
162	Electrochemical performance of hematite nanoparticles derived from spherical maghemite and elongated goethite particles. Journal of Power Sources, 2015, 276, 291-298.	4.0	25

#	Article	IF	CITATIONS
163	Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9353-9378.	5.2	413
164	TiO2 polymorphs in â€~rocking-chair' Li-ion batteries. Materials Today, 2015, 18, 345-351.	8.3	143
165	3D Cu-doped CoS porous nanosheet films as superior counterelectrodes for quantum dot-sensitized solar cells. Nano Energy, 2015, 16, 163-172.	8.2	42
166	\hat{I}^2 -FeOOH: An Earth-Abundant High-Capacity Negative Electrode Material for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 5340-5348.	3.2	57
167	Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. Journal of Power Sources, 2015, 295, 323-328.	4.0	180
168	Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. Journal of Power Sources, 2015, 294, 112-119.	4.0	99
169	One-pot solvothermal synthesis of Co1â°'xMnxC2O4 and their application as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 638, 324-333.	2.8	36
170	Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. Journal of Power Sources, 2015, 288, 270-277.	4.0	87
171	Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy, 2015, 13, 718-726.	8.2	48
172	Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors. Small, 2015, 11, 3694-3702.	5.2	243
173	Research Progress on Negative Electrodes for Practical Liâ€lon Batteries: Beyond Carbonaceous Anodes. Advanced Energy Materials, 2015, 5, 1402225.	10.2	415
174	Ultralong Durability of Porous αâ€Fe ₂ O ₃ Nanofibers in Practical Liâ€Ion Configuration with LiMn ₂ O ₄ Cathode. Advanced Science, 2015, 2, 1500050.	5.6	34
175	A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors. Nanoscale, 2015, 7, 7934-7941.	2.8	67
176	Graphene oxide supported sodium stannate lithium ion battery anodes by the peroxide route: low temperature and no waste processing. Journal of Materials Chemistry A, 2015, 3, 20681-20689.	5 . 2	28
177	Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage. ACS Nano, 2015, 9, 11371-11381.	7.3	257
178	Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Storage Materials, 2015, 1, 152-157.	9 . 5	23
179	Macroporous carbon from human hair: A journey towards the fabrication of high energy Li-ion capacitors. Electrochimica Acta, 2015, 182, 474-481.	2.6	46
180	Unveiling the Fabrication of "Rocking-Chair―Type 3.2 and 1.2 V Class Cells Using Spinel LiNi _{0.5} Mn _{1.5} O ₄ as Cathode with Li ₄ Ti ₅ O ₁₂ . Journal of Physical Chemistry C, 2015, 119, 24332-24336.	1.5	10

#	Article	IF	CITATIONS
181	Integrating three-dimensional graphene/Fe ₃ O ₄ @C composite and mesoporous Co(OH) ₂ nanosheets arrays/graphene foam into a superior asymmetric electrochemical capacitor. RSC Advances, 2015, 5, 88191-88201.	1.7	19
182	Fabrication of New 2.4â€V Lithium″on Cell with Carbonâ€Coated LiTi ₂ (PO ₄) ₃ as the Cathode. ChemElectroChem, 2015, 2, 231-235.	1.7	28
183	Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries. Chemical Communications, 2015, 51, 2225-2234.	2.2	131
184	Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. Journal of Power Sources, 2015, 274, 846-850.	4.0	97
185	Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. Journal of Power Sources, 2015, 274, 755-761.	4.0	114
186	Controlled Growth of NiMoO ₄ Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1401172.	10.2	559
187	Selfâ€Assembled Ultrathin Anatase TiO ₂ Nanosheets with Reactive (001) Facets for Highly Enhanced Reversible Li Storage. ChemElectroChem, 2014, 1, 539-543.	1.7	23
188	Does carbon coating really improves the electrochemical performance of electrospun SnO2 anodes?. Electrochimica Acta, 2014, 121, 109-115.	2.6	45
189	Carbon coated LiTi2(PO4)3 as new insertion anode for aqueous Na-ion batteries. Journal of Alloys and Compounds, 2014, 603, 48-51.	2.8	23
190	Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. Journal of Power Sources, 2014, 245, 283-291.	4.0	144
191	A General Method to Grow Porous αâ€Fe ₂ O ₃ Nanosheets on Substrates as Integrated Electrodes for Lithiumâ€lon Batteries. Advanced Materials Interfaces, 2014, 1, 1400050.	1.9	74
192	MS ₂ (M = Co and Ni) Hollow Spheres with Tunable Interiors for Highâ€Performance Supercapacitors and Photovoltaics. Advanced Functional Materials, 2014, 24, 2155-2162.	7.8	398
193	Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16526-16535.	1.5	102
194	Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta, 2014, 130, 766-770.	2.6	74
195	Layered Na _{<i>x</i>} MnO _{2+<i>z</i>} in Sodium Ion Batteries–Influence of Morphology on Cycle Performance. ACS Applied Materials & Interfaces, 2014, 6, 8059-8065.	4.0	89
196	Carbonâ€Coated LiTi ₂ (PO ₄) ₃ : An Ideal Insertion Host for Lithiumâ€lon and Sodiumâ€lon Batteries. Chemistry - an Asian Journal, 2014, 9, 878-882.	1.7	40
197	MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale, 2014, 6, 4387.	2.8	159
198	Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews, 2014, 114, 11619-11635.	23.0	632

#	Article	IF	Citations
199	A novel ionic liquid for Li ion batteries – uniting the advantages of guanidinium and piperidinium cations. RSC Advances, 2014, 4, 1996-2003.	1.7	18
200	Exceptional performance of a high voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ cathode in all one dimensional architectures with an anatase TiO ₂ anode by electrospinning. Nanoscale, 2014, 6, 8926.	2.8	52
201	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	7.2	252
202	Electrospun TiO2â^Î Nanofibers as Insertion Anode for Li-Ion Battery Applications. Journal of Physical Chemistry C, 2014, 118, 16776-16781.	1.5	28
203	High-performance hybrid electrochemical capacitor with binder-free Nb ₂ O ₅ @graphene. RSC Advances, 2014, 4, 37389.	1.7	71
204	Carbon Nanotubeâ€Encapsulated Noble Metal Nanoparticle Hybrid as a Cathode Material for Liâ€Oxygen Batteries. Advanced Functional Materials, 2014, 24, 6516-6523.	7.8	157
205	Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life. Electrochimica Acta, 2014, 146, 218-223.	2.6	23
206	Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application. Carbon, 2014, 80, 462-471.	5.4	84
207	From Waste Paper Basket to Solid State and Liâ€HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small, 2014, 10, 4395-4402.	5.2	73
208	Sodium Vanadium Oxide: A New Material for Highâ€Performance Symmetric Sodiumâ€Ion Batteries. ChemPhysChem, 2014, 15, 2121-2128.	1.0	47
209	Hollow Spheres: MS2(M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics (Adv. Funct. Mater. 15/2014). Advanced Functional Materials, 2014, 24, 2154-2154.	7.8	14
210	Enhanced cycling stability of o-LiMnO2 cathode modified by lithium boron oxide coating for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 1915-1922.	1.2	9
211	3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy and Environmental Science, 2014, 7, 728-735.	15.6	348
212	Crystalline Li3V6O16 rods as high-capacity anode materials for aqueous rechargeable lithium batteries (ARLB). RSC Advances, 2014, 4, 28601-28605.	1.7	12
213	Exceptional Performance of TiNb ₂ O ₇ Anode in All One-Dimensional Architecture by Electrospinning. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8660-8666.	4.0	124
214	A Polyoxovanadate as an Advanced Electrode Material for Supercapacitors. ChemPhysChem, 2014, 15, 2162-2169.	1.0	65
215	Plastic crystalline-semi crystalline polymer composite electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene) porous membranes for lithium ion batteries. Electrochimica Acta, 2014, 125, 362-370.	2.6	25
216	Unveiling TiNb ₂ O ₇ as an Insertion Anode for Lithium Ion Capacitors with High Energy and Power Density. ChemSusChem, 2014, 7, 1858-1863.	3.6	147

#	Article	IF	Citations
217	Symmetric Aqueous Rechargeable Lithium Battery Using Na1.16V3O8Nanobelts Electrodes for Safe High Volume Energy Storage Applications. Journal of the Electrochemical Society, 2014, 161, A256-A263.	1.3	22
218	Carbonâ€Coated Li ₃ Nd ₃ W ₂ O ₁₂ : A High Power and Lowâ€Voltage Insertion Anode with Exceptional Cycleability for Liâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1301715.	10.2	34
219	Hollow Nanospheres Constructed by CoS ₂ Nanosheets with a Nitrogenâ€Dopedâ€Carbon Coating for Energyâ€Storage and Photocatalysis. ChemSusChem, 2014, 7, 2212-2220.	3.6	96
220	Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene) Tj ETQq0 0 0 Sources, 2014, 267, 48-57.	rgBT /Ove 4.0	rlock 10 Tf 39
221	Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 301-307.	7.1	22
222	Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. Scientific Reports, 2014, 4, 7133.	1.6	51
223	Mesoporous Cobalt Oxalate Nanostructures as High-Performance Anode Materials for Lithium-Ion Batteries: Ex Situ Electrochemical Mechanistic Study. Journal of Physical Chemistry C, 2013, 117, 16316-16325.	1.5	48
224	Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 1923-1929.	1.2	39
225	Nonaqueous Lithiumâ€lon Capacitors with High Energy Densities using Trigolâ€Reduced Graphene Oxide Nanosheets as Cathodeâ€Active Material. ChemSusChem, 2013, 6, 2240-2244.	3.6	96
226	The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 10935.	5.2	247
227	Controlled synthesis of î±-FeOOH nanorods and their transformation to mesoporous î±-Fe2O3, Fe3O4@C nanorods as anodes for lithium ion batteries. RSC Advances, 2013, 3, 15316.	1.7	66
228	In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chemical Communications, 2013, 49, 10178.	2.2	384
229	Electrochemical Reactivity with Lithium of Spinel-type ZnFe _{2â€"<i>y</i>} Cr _{<i>y</i>} O ₄ (0 ≤i>y â‰⊉). Journal of Physical Chemistry C, 2013, 117, 24213-24223.	1.5	7
230	Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte. Electrochimica Acta, 2013, 105, 447-454.	2.6	23
231	Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. Journal of Materials Chemistry A, 2013, 1, 7630.	5.2	108
232	Mesoscopic magnetic iron oxide spheres for high performance Li-ion battery anode: a new pulsed laser induced reactive micro-bubble synthesis process. Journal of Materials Chemistry A, 2013, 1, 13932.	5.2	18
233	Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. European Polymer Journal, 2013, 49, 307-318.	2.6	109
234	LiMnPO4 \hat{a} e" A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3518.	5.2	383

#	Article	IF	CITATIONS
235	Controlled Synthesis of BiOCl Hierarchical Selfâ€Assemblies with Highly Efficient Photocatalytic Properties. Chemistry - an Asian Journal, 2013, 8, 258-268.	1.7	93
236	Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy, 2013, 2, 890-896.	8.2	133
237	Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. Journal of Power Sources, 2013, 227, 284-290.	4.0	178
238	Tuning the morphology of ZnMn2O4 lithium ion battery anodes by electrospinning and its effect on electrochemical performance. RSC Advances, 2013, 3, 2812.	1.7	70
239	High-rate and elevated temperature performance of electrospun V2O5 nanofibers carbon-coated by plasma enhanced chemical vapour deposition. Nano Energy, 2013, 2, 57-64.	8.2	50
240	Extraordinary long-term cycleability of TiO ₂ -B nanorods as anodes in full-cell assembly with electrospun PVdF-HFP membranes. Journal of Materials Chemistry A, 2013, 1, 308-316.	5.2	50
241	Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. Journal of Materials Chemistry A, 2013, 1, 6145.	5 . 2	154
242	Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. CrystEngComm, 2013, 15, 1922.	1.3	90
243	Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nanoscale, 2013, 5, 5973.	2.8	87
244	Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy, 2013, 2, 720-725.	8.2	107
245	Electrospun polyaniline nanofibers web electrodes for supercapacitors. Journal of Applied Polymer Science, 2013, 129, 1660-1668.	1.3	128
246	Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. Chemical Communications, 2013, 49, 6677.	2.2	90
247	Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy, 2013, 2, 1158-1163.	8.2	244
248	Electrospun Zn _{1â€"<i>x</i>} Mn _{<i>x</i>} Fe ₂ O ₄ Nanofibers As Anodes for Lithium-Ion Batteries and the Impact of Mixed Transition Metallic Oxides on Battery Performance. ACS Applied Materials & Dixer Substances (2013) 1, 5, 5461-5467.	4.0	65
249	Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)–layered clay nanocomposite fibrous membranes for lithium ion batteries. Materials Research Bulletin, 2013, 48, 526-537.	2.7	43
250	Non-aqueous energy storage devices using graphene nanosheets synthesized by green route. AIP Advances, 2013, 3, .	0.6	16
251	A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale, 2013, 5, 10636.	2.8	68
252	Synthesis and Enhanced Lithium Storage Properties of Electrospun V ₂ O ₅ Nanofibers in Full-Cell Assembly with a Spinel Li ₄ Ti ₅ O ₁₂ Anode. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3475-3480.	4.0	63

#	Article	IF	CITATIONS
253	Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific Reports, 2013, 3, 3002.	1.6	222
254	Electrospun Porous NiCo ₂ O ₄ Nanotubes as Advanced Electrodes for Electrochemical Capacitors. Chemistry - A European Journal, 2013, 19, 5892-5898.	1.7	244
255	Chemical Lithiation Studies on Combustion Synthesized V ₂ O ₅ Cathodes with Full Cell Application for Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1016-A1024.	1.3	54
256	Facile synthesis and electrochemical properties of alpha-phase ferric oxide hematite cocoons and rods as high-performance anodes for lithium-ion batteries. Journal of Materials Research, 2013, 28, 824-831.	1.2	5
257	Electrospun eggroll-like CaSnO ₃ nanotubes with high lithium storage performance. Nanoscale, 2013, 5, 134-138.	2.8	45
258	Electrospun Hierarchical CaCo ₂ O ₄ Nanofibers with Excellent Lithium Storage Properties. Chemistry - A European Journal, 2013, 19, 14823-14830.	1.7	28
259	Selected Peer-Reviewed Themed Articles on Nanonets and Nanomaterials for Energy Harnessing and Storage Presented at International Conference for Materials for Advanced Technologies, Singapore (ICMAT 2011). Nanoscience and Nanotechnology Letters, 2012, 4, 701-702.	0.4	0
260	Nanofibers-NiCo2O4: Fabrication and Li-storage properties. , 2012, , .		2
261	1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23049.	6.7	227
262	Formation of Fe ₂ O ₃ Microboxes with Hierarchical Shell Structures from Metal–Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society, 2012, 134, 17388-17391.	6.6	935
263	Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles. Nanoscale, 2012, 4, 2296.	2.8	38
264	High-Energy Density Asymmetric Supercapacitor Based on Electrospun Vanadium Pentoxide and Polyaniline Nanofibers in Aqueous Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1481-A1488.	1.3	79
265	Facile Approach to Prepare Porous CaSnO ₃ Nanotubes via a Single Spinneret Electrospinning Technique as Anodes for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6005-6012.	4.0	75
266	High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-lon Batteries with Superior Cycleability. Journal of Physical Chemistry C, 2012, 116, 18087-18092.	1.5	202
267	Electrochemical Lithium Insertion Behavior of Combustion Synthesized V2O5Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A273-A280.	1.3	46
268	High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. Journal of Materials Chemistry, 2012, 22, 16026.	6.7	167
269	Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode. RSC Advances, 2012, 2, 7534.	1.7	47
270	Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors. Physical Chemistry Chemical Physics, 2012, 14, 5808.	1.3	236

#	Article	IF	CITATIONS
271	Free-standing electrospun carbon nanofibresâ€"a high performance anode material for lithium-ion batteries. Journal Physics D: Applied Physics, 2012, 45, 265302.	1.3	47
272	Assembling carbon-coated α-Fe ₂ O ₃ hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy and Environmental Science, 2012, 5, 5252-5256.	15.6	767
273	Electrospun TiO ₂ –Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 14780-14788.	1.5	181
274	Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology, 2012, 23, 495401.	1.3	36
275	Robust, High-Density Zinc Oxide Nanoarrays by Nanoimprint Lithography-Assisted Area-Selective Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 23729-23734.	1.5	26
276	Ultralong α-MoO ₃ Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties. Journal of Physical Chemistry C, 2012, 116, 12508-12513.	1.5	246
277	α-Fe ₂ O ₃ -mediated growth and carbon nanocoating of ultrafine SnO ₂ nanorods as anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 2526-2531.	6.7	46
278	High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode. RSC Advances, 2012, 2, 7983.	1.7	41
279	High-Performing Mesoporous Iron Oxalate Anodes for Lithium-Ion Batteries. ACS Applied Materials & Lamp; Interfaces, 2012, 4, 7011-7019.	4.0	89
280	Covalent Assembly of Gold Nanoparticles: An Application toward Transistor Memory. Journal of Physical Chemistry B, 2012, 116, 9784-9790.	1.2	24
281	Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO (sub) 4 (sub). Journal of the Electrochemical Society, 2012, 159, A1435-A1439.	1.3	60
282	Improved Elevated Temperature Performance of Al-Intercalated V ₂ O ₅ Electrospun Nanofibers for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3270-3277.	4.0	80
283	Green Synthesis of NiO Nanobelts with Exceptional Pseudo apacitive Properties. Advanced Energy Materials, 2012, 2, 1188-1192.	10.2	297
284	One-Step Synthesis of SnO2and TiO2Hollow Nanostructures with Various Shapes and Their Enhanced Lithium Storage Properties. Chemistry - A European Journal, 2012, 18, 7561-7567.	1.7	67
285	LiCrTiO ₄ : A Highâ€Performance Insertion Anode for Lithiumâ€ion Batteries. ChemPhysChem, 2012, 13, 3263-3266.	1.0	46
286	Fabrication of High Energyâ€Density Hybrid Supercapacitors Using Electrospun V ₂ O ₅ Nanofibers with a Selfâ€Supported Carbon Nanotube Network. ChemPlusChem, 2012, 77, 570-575.	1.3	125
287	Paper like free-standing hybrid single-walled carbon nanotubes air electrodes for zinc–air batteries. Journal of Solid State Electrochemistry, 2012, 16, 1585-1593.	1.2	22
288	Bimodal N-doped P25-TiO2/AC composite: Preparation, characterization, physical stability, and synergistic adsorptive-solar photocatalytic removal of sulfamethazine. Applied Catalysis A: General, 2012, 427-428, 125-136.	2.2	35

#	Article	IF	Citations
289	Copper nanoparticles embedded in a polyimide film for non-volatile memory applications. Materials Letters, 2012, 68, 287-289.	1.3	19
290	Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteriesâ€"Preparation and electrochemical characterization. Journal of Power Sources, 2012, 202, 299-307.	4.0	122
291	Synthesis and crystal chemical evolution of fresnoite powders. Journal of Solid State Chemistry, 2012, 187, 165-171.	1.4	5
292	Electrochemical Performance of α-MnO ₂ Nanorods/Activated Carbon Hybrid Supercapacitor. Nanoscience and Nanotechnology Letters, 2012, 4, 724-728.	0.4	40
293	SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities. Journal of Materials Chemistry, 2011, 21, 13860.	6.7	61
294	Template-Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li-Ion Battery Anodes. Chemistry of Materials, 2011, 23, 1032-1038.	3.2	65
295	Covalent Assembly of Gold Nanoparticles for Nonvolatile Memory Applications. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 4619-4625.	4.0	29
296	α-Fe2O3 nanotubes with superior lithium storage capability. Chemical Communications, 2011, 47, 8061.	2.2	265
297	CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale, 2011, 3, 1618.	2.8	174
298	Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 14999.	6.7	210
299	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011, 21, 3422.	6.7	430
300	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. Journal of Physical Chemistry C, 2011, 115, 8400-8406.	1.5	196
301	Printable photo-supercapacitor using single-walled carbon nanotubes. Energy and Environmental Science, 2011, 4, 413-416.	15.6	188
302	TiO ₂ /AC Composites for Synergistic Adsorption-Photocatalysis Processes: Present Challenges and Further Developments for Water Treatment and Reclamation. Critical Reviews in Environmental Science and Technology, 2011, 41, 1173-1230.	6.6	164
303	TiO ₂ hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 1677-1680.	6.7	182
304	Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chemical Communications, 2011, 47, 5780.	2.2	305
305	Improved performance of polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer membranes containing lithium bis(oxalato)borate by phase inversion for lithium batteries. Solid State Sciences, 2011, 13, 1047-1051.	1.5	20
306	Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. Journal of Power Sources, 2011, 196, 8850-8854.	4.0	204

#	Article	IF	CITATIONS
307	Synthesis and improved electrochemical properties of Li ₂ MnSiO ₄ cathodes. Journal Physics D: Applied Physics, 2011, 44, 152001.	1.3	43
308	Lithiumâ€lon Conducting Electrolyte Salts for Lithium Batteries. Chemistry - A European Journal, 2011, 17, 14326-14346.	1.7	341
309	Nitrogen-doped TiO2/AC bi-functional composite prepared by two-stage calcination for enhanced synergistic removal of hydrophobic pollutant using solar irradiation. Catalysis Today, 2011, 161, 46-52.	2.2	41
310	Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. Journal of Power Sources, 2011, 196, 6465-6472.	4.0	152
311	Synthesis of Co/Co ₃ O ₄ Nanocomposite Particles Relevant to Magnetic Field Processing. Journal of Nanoscience and Nanotechnology, 2010, 10, 6580-6585.	0.9	3
312	Directed magnetic field induced assembly of high magnetic moment cobalt nanowires. Applied Physics A: Materials Science and Processing, 2010, 98, 821-830.	1.1	7
313	Effect of the Ionic Conductivity on the Performance of Polyelectrolyteâ€Based Supercapacitors. Advanced Functional Materials, 2010, 20, 4344-4350.	7.8	83
314	Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Applied Catalysis B: Environmental, 2010, 95, 414-422.	10.8	143
315	Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries. Journal of Power Sources, 2010, 195, 4350-4355.	4.0	90
316	Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption–photocatalytic degradation of aqueous bisphenol-A using solar light. Catalysis Today, 2010, 151, 8-13.	2.2	73
317	A novel method to synthesize cobalt oxide (Co ₃ O ₄) nanowires from cobalt (Co) nanobowls. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 963-966.	0.8	7
318	Olivine-Carbon Nanofibrous Cathodes for Lithium Ion Batteries. Materials Research Society Symposia Proceedings, 2010, 1266, 50201.	0.1	0
319	Fast Synthesis of α-MoO ₃ Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities. Journal of Physical Chemistry C, 2010, 114, 8675-8678.	1.5	208
320	Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching. Journal of the American Chemical Society, 2010, 132, 16271-16277.	6.6	241
321	One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chemical Communications, 2010, 46, 6906.	2.2	185
322	Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO (sub) Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. Journal of the American Chemical Society, 2010, 132, 6124-6130.	6.6	1,215
323	Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 6720.	6.7	285
324	Particle Size Effect of Silver Nanoparticles Decorated Single Walled Carbon Nanotube Electrode for Supercapacitors. Journal of the Electrochemical Society, 2010, 157, A179.	1.3	103

#	Article	IF	CITATIONS
325	Dendrimer-encapsulated Pt nanoparticles in supercritical medium: Synthesis, characterization, and application to device fabrication. Journal of Colloid and Interface Science, 2009, 332, 505-510.	5.0	23
326	SnO ₂ Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 20504-20508.	1.5	222
327	Pseudomorphic 2A→ 2M→ 2H phase transitions in lanthanum strontium germanate electrolyte apatites. Dalton Transactions, 2009, , 8280.	1.6	14
328	The crystal chemistry of the alkaline-earth apatites $A10(PO4)6CuxOy(H)z$ (A = Ca, Sr and Ba). Dalton Transactions, 2009, , 6722.	1.6	39
329	Crystal chemistry of mimetite, Pb ₁₀ (AsO ₄) ₆ Cl _{1.48} O _{0.26} , and finnemanite, Pb ₁₀ (AsO ₃) ₆ Cl ₂ . Acta Crystallographica Section B: Structural Science, 2008, 64, 34-41.	1.8	13
330	Effect of silver on the photocatalytic degradation of humic acid. Catalysis Today, 2008, 131, 250-254.	2.2	37
331	Understanding of Boron Junction Stability in Preamorphized Silicon after Optimized Flash Annealing. Journal of the Electrochemical Society, 2008, 155, H508.	1.3	5
332	Cobalt–ferrite nanobowl arrays: Curved magnetic nanostructures. Journal of Materials Research, 2007, 22, 1250-1254.	1.2	12
333	Enhanced Functional and Structural Characteristics of Poly(vinylidene-trifluoroethylene) Copolymer Thin Films by Corona Poling. Journal of the Electrochemical Society, 2007, 154, G224.	1.3	17
334	Degradation of Methylene Blue by Three-Dimensionally Ordered Macroporous Titania. Environmental Science & Environmental Scienc	4.6	118
335	An XPS study of Al2Au and AlAu4 intermetallic oxidation. Applied Surface Science, 2007, 253, 6217-6221.	3.1	24
336	The crystallographic and magnetic characteristics of Sr2CrO4 (K2NiF4-type) and Sr10(CrO4)6F2 (apatite-type). Journal of Solid State Chemistry, 2007, 180, 1538-1546.	1.4	28
337	Cadmium and Lead Ion Capture with Three Dimensionally Ordered Macroporous Hydroxyapatite. Environmental Science & Environmental Science & Environmenta	4.6	122
338	Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries. Journal of Power Sources, 2006, 162, 1312-1321.	4.0	177
339	Synthesis and characterization of three-dimensionally ordered macroporous ternary oxide. Journal of Solid State Chemistry, 2006, 179, 866-872.	1.4	11
340	The processing and characterization of magnetic nanobowls. Thin Solid Films, 2006, 505, 93-96.	0.8	14
341	Synthesis and crystallization of macroporous hydroxyapatite. Journal of Solid State Chemistry, 2005, 178, 2838-2845.	1.4	47
342	Apatite - An Adaptive Framework Structure. Reviews in Mineralogy and Geochemistry, 2005, 57, 307-401.	2.2	159

#	Article	IF	CITATIONS
343	Template assisted assembly of cobalt nanobowl arrays. Journal of Materials Chemistry, 2005, 15, 4424.	6.7	62
344	Transient carrier velocities in bulk GaAs: Quantitative comparison between terahertz data and ensemble Monte Carlo calculations. Applied Physics Letters, 2002, 81, 679-681.	1.5	36
345	Cathodic properties of (Al, Mg) co-doped LiNi0.7Co0.3O2. Solid State Ionics, 2002, 152-153, 199-205.	1.3	24
346	Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochimica Acta, 2002, 48, 219-226.	2.6	64
347	Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers. Journal of Membrane Science, 2001, 182, 111-123.	4.1	58
348	Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2. Journal of Power Sources, 2001, 93, 156-162.	4.0	131
349	High room-temperature hole mobility in Ge0.7Si0.3/Ge/Ge0.7Si0.3 modulation-doped heterostructures. Journal of Applied Physics, 2001, 89, 2497-2499.	1.1	44
350	Synthesis and Cathodic Properties of LiCo[sub 1â^'y]Rh[sub y]O[sub 2] (0â‰�â‰�.2) and LiRhO[sub 2]. Journal of the Electrochemical Society, 2001, 148, A1279.	1.3	67
351	Hot carrier transport in modulation doped Si/SiGe and Ge/SiGe heterostructures. Thin Solid Films, 2000, 369, 333-337.	0.8	3
352	Low- and high-field transport properties of modulation-doped Si/SiGe and Ge/SiGe heterostructures: Effect of phonon confinement in germanium quantum wells. Physical Review B, 2000, 61, 16807-16818.	1.1	16
353	Route of Irreversible Transformation in Layered Tin Thiophosphite and Enhanced Lithium Storage Performance. ACS Applied Energy Materials, 0, , .	2.5	8
354	Electrochemical Route to Alleviate Irreversible Capacity Loss from Conversion Type \hat{l}_{\pm} -Fe ₂ O ₃ Anodes by LiVPO ₄ F Prelithiation. ACS Applied Energy Materials, 0, , .	2.5	5