
Raffaele De Risi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5027485/publications.pdf Version: 2024-02-01

RAFEAFLE DE RISI

#	Article	IF	CITATIONS
1	A computational framework for finite element modeling of traveling loads on bridges in dynamic regime. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 470-484.	9.8	6
2	Liquefaction potential for the Kathmandu Valley, Nepal: a sensitivity study. Bulletin of Earthquake Engineering, 2022, 20, 25-51.	4.1	8
3	Scenario-based earthquake risk assessment for central-southern Malawi: The case of the Bilila-Mtakataka Fault. International Journal of Disaster Risk Reduction, 2022, 67, 102655.	3.9	10
4	A simplified model for seismic safety assessment of reinforced concrete buildings: framework and application to a 3-storey plan-irregular moment resisting frame. Engineering Structures, 2022, 250, 113348.	5.3	10
5	Challenges and perspectives for integral bridges in the UK: PLEXUS small-scale experiments. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 2022, 175, 27-43.	1.7	4
6	The SAFER geodatabase for the Kathmandu valley: Bayesian kriging for data-scarce regions. Earthquake Spectra, 2021, 37, 1108-1126.	3.1	14
7	Resilient infrastructures for reducing urban flooding risks. , 2021, , 181-200.		2
8	Multi-hazard earthquake-tsunami loss estimation of Kuroshio Town, Kochi Prefecture, Japan considering the Nankai-Tonankai megathrust rupture scenarios. International Journal of Disaster Risk Reduction, 2021, 54, 102050.	3.9	17
9	Seismic assessment of wind turbines: How crucial is rotor-nacelle-assembly numerical modeling?. Soil Dynamics and Earthquake Engineering, 2021, 141, 106483.	3.8	15
10	Fragility curves for non-engineered masonry buildings in developing countries derived from real data based on structural surveys and laboratory tests. Soft Computing, 2021, 25, 6113-6138.	3.6	15
11	Are current tsunami evacuation approaches safe enough?. Stochastic Environmental Research and Risk Assessment, 2021, 35, 759.	4.0	4
12	Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Frontiers in Earth Science, 2021, 9, .	1.8	65
13	Seismic fragility models for typical non-engineered URM residential buildings in Malawi. Structures, 2021, 32, 2266-2278.	3.6	12
14	Non-linear finite element optimization for inelastic buckling modelling of smooth rebars. Engineering Structures, 2021, 240, 112378.	5.3	5
15	A frictional sliding on a sprung slope (FSSS) device that axiomatically confers energy dissipation with re-centring to post-tensioned (PT) frames: A conceptual study. Engineering Structures, 2021, 244, 112794.	5.3	4
16	A new energy ompatible nonstationary stochastic groundâ€motion simulation method. Earthquake Engineering and Structural Dynamics, 2021, 50, 1864-1883.	4.4	3
17	From flood risk mapping toward reducing vulnerability: the case of Addis Ababa. Natural Hazards, 2020, 100, 387-415.	3.4	35
18	Seismic vulnerability of offshore wind turbines to pulse and nonâ€pulse records. Earthquake Engineering and Structural Dynamics, 2020, 49, 24-50.	4.4	42

RAFFAELE DE RISI

#	Article	IF	CITATIONS
19	Finite element modeling optimization of wind turbine blades from an earthquake engineering perspective. Engineering Structures, 2020, 222, 111105.	5.3	10
20	Mapping the seismic safety of RC "template schools" in Nepal. International Journal of Disaster Risk Reduction, 2020, 51, 101844.	3.9	4
21	Seismic hazard and risk in Bhutan. Natural Hazards, 2020, 104, 2339-2367.	3.4	15
22	Mainshockâ€aftershock stateâ€dependent fragility curves: A case of woodâ€frame houses in British Columbia, Canada. Earthquake Engineering and Structural Dynamics, 2020, 49, 884-903.	4.4	32
23	The SAFER geodatabase for the Kathmandu Valley: Geotechnical and geological variability. Earthquake Spectra, 2020, 36, 1549-1569.	3.1	12
24	Uncertainty quantification of tsunami inundation in Kuroshio, Kochi Prefecture, Japan, using the Nankai–Tonankai megathrust rupture scenarios. Natural Hazards and Earth System Sciences, 2020, 20, 3039-3056.	3.6	12
25	Seismic Mitigation Framework for Non-engineered Masonry Buildings in Developing Countries: Application to Malawi in the East African Rift. , 2019, , 195-223.		6
26	Seismic risk at urban scale: the role of site response analysis. Soil Dynamics and Earthquake Engineering, 2019, 123, 320-336.	3.8	22
27	Multi-dimensional damage measure for seismic reliability analysis. Structural Safety, 2019, 78, 1-11.	5.3	25
28	Life Cycle Cost and Return on Investment as complementary decision variables for urban flood risk management in developing countries. International Journal of Disaster Risk Reduction, 2018, 28, 88-106.	3.9	53
29	Multi-hazard loss estimation for shaking and tsunami using stochastic rupture sources. International Journal of Disaster Risk Reduction, 2018, 28, 539-554.	3.9	42
30	Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records. Soil Dynamics and Earthquake Engineering, 2018, 109, 154-172.	3.8	106
31	Delineation of flooding risk hotspots based on digital elevation model, calculated and historical flooding extents: the case of Ouagadougou. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1545-1559.	4.0	37
32	Reconnaissance of 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 2018, 34, 1547-1555.	3.1	36
33	Scenario-Based Seismic Risk Assessment for Buried Transmission Gas Pipelines at Regional Scale. Journal of Pipeline Systems Engineering and Practice, 2018, 9, .	1.6	25
34	Local Site Effects and Incremental Damage of Buildings during the 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 2018, 34, 1639-1669.	3.1	78
35	Bayesian tsunami fragility modeling considering input data uncertainty. Stochastic Environmental Research and Risk Assessment, 2017, 31, 1253-1269.	4.0	25
36	ls flow velocity important in tsunami empirical fragility modeling?. Earth-Science Reviews, 2017, 166, 64-82.	9.1	51

RAFFAELE DE RISI

#	Article	IF	CITATIONS
37	Probabilistic seismic performance assessment of an existing RC bridge with portal-frame piers designed for gravity loads only. Engineering Structures, 2017, 145, 348-367.	5.3	26
38	Stochastic coupled simulation of strong motion and tsunami for the 2011 Tohoku, Japan earthquake. Stochastic Environmental Research and Risk Assessment, 2017, 31, 2337-2355.	4.0	26
39	Probabilistic Earthquake-tsunami Hazard Assessment: The First Step Towards Resilient Coastal Communities. Procedia Engineering, 2017, 198, 1058-1069.	1.2	6
40	Linear Time-History Analysis for EC8 design of CBF structures. Procedia Engineering, 2017, 199, 3522-3527.	1.2	2
41	Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard Predictions. Pure and Applied Geophysics, 2017, 174, 3083-3106.	1.9	26
42	Probabilistic Tsunami Loss Estimation Methodology: Stochastic Earthquake Scenario Approach. Earthquake Spectra, 2017, 33, 1301-1323.	3.1	20
43	Influence of Flow Velocity on Tsunami Loss Estimation. Geosciences (Switzerland), 2017, 7, 114.	2.2	14
44	Probabilistic Earthquake–Tsunami Multi-Hazard Analysis: Application to the Tohoku Region, Japan. Frontiers in Built Environment, 2016, 2, .	2.3	41
45	Performance-based flood safety-checking for non-engineered masonry structures. Engineering Structures, 2016, 106, 109-123.	5.3	28
46	Model updating and seismic loss assessment for a portfolio of bridges. Bulletin of Earthquake Engineering, 2016, 14, 699-719.	4.1	32
47	Defining structural robustness under seismic and simultaneous actions: an application to precast RC buildings. Bulletin of Earthquake Engineering, 2016, 14, 485-499.	4.1	14
48	Empirical Assessment of Non-Linear Seismic Demand of Mainshockââ,¬â€œAftershock Ground-Motion Sequences for Japanese Earthquakes. Frontiers in Built Environment, 2015, 1, .	2.3	20
49	Meso-scale hazard zoning of potentially flood prone areas. Journal of Hydrology, 2015, 527, 316-325.	5.4	29
50	Bayesian Cloud Analysis: efficient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering, 2015, 13, 1183-1203.	4.1	189
51	Vulnerability of Built Environment to Flooding in African Cities. Future City, 2015, , 77-106.	0.5	5
52	Probabilistic GIS-based method for delineation of urban flooding risk hotspots. Natural Hazards, 2014, 73, 975.	3.4	64
53	Seismic Reliability Assessment, Alternative Methods for. , 2014, , 1-29.		2
54	Flood risk assessment for informal settlements. Natural Hazards, 2013, 69, 1003-1032.	3.4	101

#	Article	IF	CITATIONS
55	Approximate Method for Transverse Response Analysis of Partially Isolated Bridges. Journal of Bridge Engineering, 2013, 18, 1121-1130.	2.9	12