
Vincent Probst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sudden Cardiac Arrest Associated with Early Repolarization. New England Journal of Medicine, 2008, 358, 2016-2023.	13.9	1,308
2	2018 ESC Guidelines for the diagnosis and management of syncope. European Heart Journal, 2018, 39, 1883-1948.	1.0	1,200
3	Long-Term Prognosis of Patients Diagnosed With Brugada Syndrome. Circulation, 2010, 121, 635-643.	1.6	720
4	An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm, 2010, 7, 33-46.	0.3	649
5	Cardiac conduction defects associate with mutations in SCN5A. Nature Genetics, 1999, 23, 20-21.	9.4	549
6	Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature Genetics, 2013, 45, 1044-1049.	9.4	467
7	Long-Term Prognosis of Individuals With Right Precordial ST-Segment–Elevation Brugada Syndrome. Circulation, 2005, 111, 257-263.	1.6	427
8	Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. Journal of Clinical Investigation, 2008, 118, 2260-8.	3.9	400
9	Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non–SCN5A-related patients. Journal of the American College of Cardiology, 2002, 40, 350-356.	1.2	360
10	Novel SCN5A Mutation Leading Either to Isolated Cardiac Conduction Defect or Brugada Syndrome in a Large French Family. Circulation, 2001, 104, 3081-3086.	1.6	348
11	Drugs and Brugada syndrome patients: Review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm, 2009, 6, 1335-1341.	0.3	342
12	Outcome After Implantation of a Cardioverter-Defibrillator in Patients With Brugada Syndrome. Circulation, 2006, 114, 2317-2324.	1.6	303
13	Long-Term Follow-Up of Patients With Short QT Syndrome. Journal of the American College of Cardiology, 2011, 58, 587-595.	1.2	301
14	Characteristics of Recurrent Ventricular Fibrillation Associated With Inferolateral Early Repolarization. Journal of the American College of Cardiology, 2009, 53, 612-619.	1.2	287
15	KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nature Genetics, 2012, 44, 456-460.	9.4	281
16	Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nature Genetics, 2014, 46, 826-836.	9.4	281
17	Mitral valve disease—morphology and mechanisms. Nature Reviews Cardiology, 2015, 12, 689-710.	6.1	281
18	Clinical Aspects and Prognosis of Brugada Syndrome in Children. Circulation, 2007, 115, 2042-2048.	1.6	275

#	Article	lF	CITATIONS
19	Ventricular Fibrillation with Prominent Early Repolarization Associated with a Rare Variant of KCNJ8/K _{ATP} Channel. Journal of Cardiovascular Electrophysiology, 2009, 20, 93-98.	0.8	269
20	Outcome After Implantation of a Cardioverter-Defibrillator in Patients With Brugada Syndrome. Circulation, 2013, 128, 1739-1747.	1.6	267
21	SCN5A Mutations and the Role of Genetic Background in the Pathophysiology of Brugada Syndrome. Circulation: Cardiovascular Genetics, 2009, 2, 552-557.	5.1	262
22	Mutations in the Gene Encoding Filamin A as a Cause for Familial Cardiac Valvular Dystrophy. Circulation, 2007, 115, 40-49.	1.6	257
23	Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Human Molecular Genetics, 2012, 21, 2759-2767.	1.4	227
24	Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm, 2009, 6, 341-348.	0.3	224
25	Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace, 2010, 12, 861-868.	0.7	204
26	Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome. Circulation, 2016, 133, 622-630.	1.6	201
27	Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15617-15622.	3.3	163
28	SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm, 2020, 17, 1456-1462.	0.3	162
29	Haploinsufficiency in combination with aging causes SCN5A-linked hereditary LenÃ gre disease. Journal of the American College of Cardiology, 2003, 41, 643-652.	1.2	158
30	Multifocal Ectopic Purkinje-Related Premature Contractions. Journal of the American College of Cardiology, 2012, 60, 144-156.	1.2	156
31	<i>MOC1</i> . Circulation: Cardiovascular Genetics, 2011, 4, 261-268.	5.1	151
32	2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm, 2021, 18, e1-e50.	0.3	151
33	Practical Instructions for the 2018 ESC Guidelines for the diagnosis and management of syncope. European Heart Journal, 2018, 39, e43-e80.	1.0	149
34	Molecular Genetics and Functional Anomalies in a Series of 248 Brugada Cases with 11 Mutations in the TRPM4 Channel. PLoS ONE, 2013, 8, e54131.	1.1	131
35	Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Human Molecular Genetics, 2015, 24, 2757-2763.	1.4	130
36	Role of common and rare variants in <i>SCN10A</i> : results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovascular Research, 2015, 106, 520-529.	1.8	108

#	Article	IF	CITATIONS
37	Genetic association analyses highlight biological pathways underlying mitral valve prolapse. Nature Genetics, 2015, 47, 1206-1211.	9.4	103
38	Defects in Ankyrin-Based Membrane Protein Targeting Pathways Underlie Atrial Fibrillation. Circulation, 2011, 124, 1212-1222.	1.6	102
39	Prevalence and Prognostic Role of Various Conduction Disturbances in Patients With the Brugada Syndrome. American Journal of Cardiology, 2013, 112, 1384-1389.	0.7	98
40	Novel Brugada <i>SCN5A</i> Mutation Leading to ST Segment Elevation in the Inferior or the Right Precordial Leads. Journal of Cardiovascular Electrophysiology, 2003, 14, 200-203.	0.8	97
41	Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. European Heart Journal, 2019, 40, 2953-2961.	1.0	96
42	Progressive Cardiac Conduction Defect is the Prevailing Phenotype in Carriers of a Brugada Syndrome SCN5A Mutation. Journal of Cardiovascular Electrophysiology, 2006, 17, 270-275.	0.8	90
43	Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm, 2016, 13, 1274-1282.	0.3	89
44	Prevalence of early repolarization pattern in inferolateral leads in patients with Brugada syndrome. Heart Rhythm, 2008, 5, 1685-1689.	0.3	85
45	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
46	Increased Tpeak-Tend interval is highly and independently related to arrhythmic events in Brugada syndrome. Heart Rhythm, 2015, 12, 2469-2476.	0.3	82
47	Identification of Large Families in Early Repolarization Syndrome. Journal of the American College of Cardiology, 2013, 61, 164-172.	1.2	81
48	Screening for Copy Number Variation in Genes Associated With the Long QT Syndrome. Journal of the American College of Cardiology, 2011, 57, 40-47.	1.2	78
49	Familial Aggregation of Calcific Aortic Valve Stenosis in the Western Part of France. Circulation, 2006, 113, 856-860.	1.6	74
50	Fever-related arrhythmic events in the multicenter Survey on Arrhythmic Events in Brugada Syndrome. Heart Rhythm, 2018, 15, 1394-1401.	0.3	71
51	Cardiac characteristics and long-term outcome in Andersen-Tawil syndrome patients related to KCNJ2 mutation. Europace, 2013, 15, 1805-1811.	0.7	70
52	Characteristics and long-term outcome of non-immune isolated atrioventricular block diagnosed in utero or early childhood: a multicentre study. European Heart Journal, 2012, 33, 622-629.	1.0	68
53	Prognostic significance of fever-induced Brugada syndrome. Heart Rhythm, 2016, 13, 1515-1520.	0.3	68
54	Monomorphic ventricular tachycardia in patients with Brugada syndrome: A multicenter retrospective study. Heart Rhythm, 2016, 13, 669-682.	0.3	67

#	Article	IF	CITATIONS
55	Variable Nav1.5 Protein Expression from the Wild-Type Allele Correlates with the Penetrance of Cardiac Conduction Disease in the Scn5a+/â~ Mouse Model. PLoS ONE, 2010, 5, e9298.	1.1	67
56	Inherited progressive cardiac conduction disorders. Current Opinion in Cardiology, 2015, 30, 33-39.	0.8	66
57	Gender differences in patients with Brugada syndrome and arrhythmic events: Data from a survey on arrhythmic events in 678 patients. Heart Rhythm, 2018, 15, 1457-1465.	0.3	65
58	Response to intravenous ajmaline: a retrospective analysis of 677 ajmaline challenges. Europace, 2009, 11, 1345-1352.	0.7	64
59	Role of Electrophysiological Studies in Predicting Risk of Ventricular Arrhythmia in Early Repolarization Syndrome. Journal of the American College of Cardiology, 2015, 65, 151-159.	1.2	63
60	Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. International Journal of Cardiology, 2016, 207, 349-358.	0.8	62
61	Brugada syndrome: Diagnosis, risk stratification and management. Archives of Cardiovascular Diseases, 2017, 110, 188-195.	0.7	61
62	Idiopathic Ventricular Fibrillation. JACC: Clinical Electrophysiology, 2020, 6, 591-608.	1.3	60
63	Incidence and predictors of sudden death, major conduction defects and sustained ventricular tachyarrhythmias in 1388 patients with myotonic dystrophy type 1. European Heart Journal, 2017, 38, ehw569.	1.0	59
64	A Connexin40 Mutation Associated With a Malignant Variant of Progressive Familial Heart Block Type I. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 163-172.	2.1	58
65	Prevalence and significance of rare RYR2 variants in arrhythmogenic right ventricular cardiomyopathy/dysplasia: Results of a systematic screening. Heart Rhythm, 2014, 11, 1999-2009.	0.3	58
66	Age of First Arrhythmic Event in Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	57
67	Profile of patients with Brugada syndrome presenting with their first documented arrhythmic event: Data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Heart Rhythm, 2018, 15, 716-724.	0.3	57
68	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	1.1	57
69	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
70	The QUIDAM study: Hydroquinidine therapy for the management of Brugada syndrome patients at high arrhythmic risk. Heart Rhythm, 2017, 14, 1147-1154.	0.3	54
71	Prevalence, characteristics, and prognosis role of type 1 ST elevation in the peripheral ECG leads in patients with Brugada syndrome. Heart Rhythm, 2013, 10, 1012-1018.	0.3	53
72	Characterization and Management of Arrhythmic Events in Young Patients With Brugada Syndrome. Journal of the American College of Cardiology, 2019, 73, 1756-1765.	1.2	53

#	Article	IF	CITATIONS
73	Robustness and relevance of predictive score in sudden cardiac death for patients with Brugada syndrome. European Heart Journal, 2021, 42, 1687-1695.	1.0	53
74	Variants of Transient Receptor Potential Melastatin Member 4 in Childhood Atrioventricular Block. Journal of the American Heart Association, 2016, 5, .	1.6	50
75	Monomorphic Ventricular Tachycardia Due to Brugada Syndrome Successfully Treated by Hydroquinidine Therapy in a 3-Year-Old Child. Journal of Cardiovascular Electrophysiology, 2006, 17, 97-100.	0.8	49
76	Clinical characteristics of a familial inherited myxomatous valvular dystrophy mapped to Xq28. Journal of the American College of Cardiology, 2000, 35, 1890-1897.	1.2	48
77	The Brugada Syndrome: A Rare Arrhythmia Disorder with Complex Inheritance. Frontiers in Cardiovascular Medicine, 2016, 3, 9.	1.1	48
78	<i>RRAD</i> mutation causes electrical and cytoskeletal defects in cardiomyocytes derived from a familial case of Brugada syndrome. European Heart Journal, 2019, 40, 3081-3094.	1.0	48
79	New Family With Catecholaminergic Polymorphic Ventricular Tachycardia Linked to the Triadin Gene. Journal of Cardiovascular Electrophysiology, 2015, 26, 1146-1150.	0.8	45
80	Genetic Association Analyses Highlight <i>IL6</i> , <i>ALPL</i> , and <i>NAV1</i> As 3 New Susceptibility Genes Underlying Calcific Aortic Valve Stenosis. Circulation Genomic and Precision Medicine, 2019, 12, e002617.	1.6	45
81	Genetics of syndromic and non-syndromic mitral valve prolapse. Heart, 2018, 104, 978-984.	1.2	44
82	New insights into mitral valve dystrophy: a Filamin-A genotype–phenotype and outcome study. European Heart Journal, 2018, 39, 1269-1277.	1.0	44
83	Are Women with Severely Symptomatic Brugada Syndrome Different from Men?. Journal of Cardiovascular Electrophysiology, 2008, 19, 1181-1185.	0.8	41
84	<i>SCN5A</i> Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in <i>SCN5A</i> Families. Circulation Genomic and Precision Medicine, 2020, 13, e002911.	1.6	41
85	Remote implantable cardioverter defibrillator monitoring in a Brugada syndrome population. Europace, 2008, 11, 489-494.	0.7	40
86	Usefulness of Fetuin-A and C-Reactive Protein Concentrations for Prediction of Outcome in Acute Coronary Syndromes (from the French Registry of Acute ST-Elevation Non-ST-Elevation Myocardial) Tj ETQq0 0	0 rg 6.ī 7/Ov	erloada 10 Tf 5
87	Filamin-A-Related Myxomatous Mitral Valve Dystrophy: Genetic, Echocardiographic and Functional Aspects. Journal of Cardiovascular Translational Research, 2011, 4, 748-756.	1.1	39
88	Biallelic PPA2 Mutations Cause Sudden Unexpected Cardiac Arrest in Infancy. American Journal of Human Genetics, 2016, 99, 666-673.	2.6	39
89	High risk of heart failure associated with desmogleinâ€2 mutations compared to plakophilinâ€2 mutations in arrhythmogenic right ventricular cardiomyopathy/dysplasia. European Journal of Heart Failure, 2019, 21, 792-800.	2.9	37
90	Sodium-channel blocker challenge in the familial screening of Brugada syndrome: Safety and predictors of positivity. Heart Rhythm, 2017, 14, 1442-1448.	0.3	36

#	Article	IF	CITATIONS
91	Benign vs malignant inferolateral early repolarization: Focus on the T wave. Heart Rhythm, 2016, 13, 894-902.	0.3	33
92	SCN5A mutations in 442 neonates and children: genotype–phenotype correlation and identification of higher-risk subgroups. European Heart Journal, 2018, 39, 2879-2887.	1.0	33
93	Development and Validation of a New Scoring System to Predict Survival in Patients With Myotonic Dystrophy Type 1. JAMA Neurology, 2018, 75, 573.	4.5	32
94	International Triadin Knockout Syndrome Registry. Circulation Genomic and Precision Medicine, 2019, 12, e002419.	1.6	32
95	Fine-scale human genetic structure in Western France. European Journal of Human Genetics, 2015, 23, 831-836.	1.4	31
96	The psychological impact of implantable cardioverter defibrillator implantation on Brugada syndrome patients. Europace, 2011, 13, 1034-1039.	0.7	30
97	Valvular dystrophy associated filamin A mutations reveal a new role of its first repeats in small-GTPase regulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 234-244.	1.9	30
98	Clinical Yield of Familial Screening After Sudden Death in Young Subjects. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	29
99	PQ segment depression in patients with short QT syndrome: A novel marker for diagnosing short QT syndrome?. Heart Rhythm, 2014, 11, 1024-1030.	0.3	28
100	An International Multicenter Cohort Study on Î ² -Blockers for the Treatment of Symptomatic Children With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2022, 145, 333-344.	1.6	28
101	Progressive Atrial Conduction Defects Associated With Bone Malformation Caused by a Connexin-45 Mutation. Journal of the American College of Cardiology, 2017, 70, 358-370.	1.2	27
102	Age at diagnosis of Brugada syndrome: Influence on clinical characteristics and risk of arrhythmia. Heart Rhythm, 2020, 17, 743-749.	0.3	27
103	TRPM4 non-selective cation channel variants in long QT syndrome. BMC Medical Genetics, 2017, 18, 31.	2.1	26
104	Clinical presentation and follow-up of women affected by Brugada syndrome. Heart Rhythm, 2019, 16, 260-267.	0.3	26
105	Brugada Syndrome. JACC: Clinical Electrophysiology, 2022, 8, 386-405.	1.3	26
106	Parental Electrocardiographic Screening Identifies a High Degree of Inheritance for Congenital and Childhood Nonimmune Isolated Atrioventricular Block. Circulation, 2012, 126, 1469-1477.	1.6	25
107	Genome-wide association study reveals novel genetic loci: a new polygenic risk score for mitral valve prolapse. European Heart Journal, 2022, 43, 1668-1680.	1.0	25
108	Circulating PCSK9 levels in acute coronary syndrome: Results from the PC-SCA-9 prospective study. Diabetes and Metabolism, 2017, 43, 529-535.	1.4	23

#	Article	IF	CITATIONS
109	Clinical outcome of patients with the Brugada type 1 electrocardiogram without prophylactic implantable cardioverter defibrillator in primary prevention: a cumulative analysis of seven large prospective studies. Europace, 2018, 20, f77-f85.	0.7	23
110	Unusual clinical presentation in a family with catecholaminergic polymorphic ventricular tachycardia due to a G14876A ryanodine receptor gene mutation. American Journal of Cardiology, 2005, 95, 700-702.	0.7	22
111	Variants in the <i>SCN5A</i> Promoter Associated With Various Arrhythmia Phenotypes. Journal of the American Heart Association, 2016, 5, .	1.6	22
112	Ethnic differences in patients with Brugada syndrome and arrhythmic events: New insights from Survey on Arrhythmic Events in Brugada Syndrome. Heart Rhythm, 2019, 16, 1468-1474.	0.3	22
113	Electropharmacological characterization of cardiac repolarization in German shepherd dogs with an inherited syndrome of sudden death: abnormal response to potassium channel blockers. Journal of the American College of Cardiology, 2000, 36, 939-947.	1.2	21
114	Cadherin 2-Related Arrhythmogenic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2021, 14, e003097.	1.6	21
115	Complex Brugada syndrome inheritance in a family harbouring compound SCN5A and CACNA1C mutations. Basic Research in Cardiology, 2014, 109, 446.	2.5	20
116	Cardiac Phenotype and Long-Term Follow-Up of Patients With Mutations in NKX2-5 Gene. Journal of the American College of Cardiology, 2016, 68, 2389-2390.	1.2	20
117	Dysfunction of the Voltageâ€Gated K ⁺ Channel β2 Subunit in a Familial Case of Brugada Syndrome. Journal of the American Heart Association, 2016, 5, .	1.6	20
118	T-Wave Oversensing in Patients With Brugada Syndrome: True Bipolar Versus Integrated Bipolar Implantable Cardioverter Defibrillator Leads. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 792-798.	2.1	19
119	Safety, feasibility, and outcome results of cardiac resynchronization with triple-site ventricular stimulation compared to conventional cardiac resynchronization. Heart Rhythm, 2016, 13, 183-189.	0.3	19
120	Risk of ventricular arrhythmia in patients with myocardial infarction and non-obstructive coronary arteries and normal ejection fraction. World Journal of Cardiology, 2017, 9, 268.	0.5	19
121	Value of the sodium-channel blocker challenge in Brugada syndrome. International Journal of Cardiology, 2017, 245, 178-180.	0.8	17
122	2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Journal of Arrhythmia, 2021, 37, 481-534.	0.5	17
123	Sodium channel blocker tests allow a clear distinction of electrophysiological characteristics and prognosis in patients with a type 2 or 3 Brugada electrocardiogram pattern. Heart Rhythm, 2008, 5, 1561-1564.	0.3	16
124	Differential calcium sensitivity in Na _V 1.5 mixed syndrome mutants. Journal of Physiology, 2017, 595, 6165-6186.	1.3	16
125	Time-to-first appropriate shock in patients implanted prophylactically with an implantable cardioverter-defibrillator: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Europace, 2019, 21, 796-802.	0.7	16
126	Ventricular fibrillation in loop recorder memories in a patient with early repolarization syndrome. Europace, 2012, 14, 148-149.	0.7	15

#	Article	IF	CITATIONS
127	Mental stress test: a rapid, simple, and efficient test to unmask long QT syndrome. Europace, 2018, 20, 2014-2020.	0.7	15
128	Lack of genotype-phenotype correlation in Brugada Syndrome and Sudden Arrhythmic Death Syndrome families with reported pathogenic SCN1B variants. Heart Rhythm, 2018, 15, 1051-1057.	0.3	15
129	Predictors for short-term progressive heart failure death in New York Heart Association II patients implanted with a cardioverter defibrillator—the EVADEF study. American Heart Journal, 2010, 159, 659-664.e1.	1.2	13
130	Identification of a strong genetic background for progressive cardiac conduction defect by epidemiological approach. Heart, 2012, 98, 1305-1310.	1.2	13
131	Heart rate variability and repolarization characteristics in symptomatic and asymptomatic Brugada syndrome. Europace, 2017, 19, euw224.	0.7	12
132	Effect of baroreflex stimulation using phenylephrine injection on ST segment elevation and ventricular arrhythmia-inducibility in Brugada syndrome patients. Europace, 2009, 11, 382-384.	0.7	11
133	Cardiac remote monitoring in France. Archives of Cardiovascular Diseases, 2014, 107, 253-260.	0.7	9
134	Insufficiency of electrocardiogram alone in predicting infrahisian abnormalities in patients with type 1 myotonic dystrophy. International Journal of Cardiology, 2014, 172, 625-627.	0.8	8
135	Incomplete Timothy syndrome secondary to a mosaic mutation of the <i>CACNA1C</i> gene diagnosed using nextâ€generation sequencing. American Journal of Medical Genetics, Part A, 2017, 173, 531-536.	0.7	8
136	An African loss-of-function CACNA1C variant p.T1787M associated with a risk of ventricular fibrillation. Scientific Reports, 2018, 8, 14619.	1.6	8
137	Diagnosis and management of subcutaneous implantable cardioverterâ€defibrillator infections based on process mapping. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 958-965.	0.5	8
138	Malignant Purkinje ectopy induced by sodium channel blockers. Heart Rhythm, 2022, 19, 1595-1603.	0.3	8
139	Quinidine in Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1309-1310.	2.1	7
140	Familial Catecholamine-Induced QT Prolongation in Unexplained Sudden Cardiac Death. Journal of the American College of Cardiology, 2017, 69, 1642-1643.	1.2	7
141	Health-related quality of life and physical activity in children with inherited cardiac arrhythmia or inherited cardiomyopathy: the prospective multicentre controlled QUALIMYORYTHM study rationale, design and methods. Health and Quality of Life Outcomes, 2021, 19, 187.	1.0	7
142	Genotype-Phenotype Correlation of <i>SCN5A</i> Genotype in Patients With Brugada Syndrome and Arrhythmic Events: Insights From the SABRUS in 392 Probands. Circulation Genomic and Precision Medicine, 2021, 14, e003222.	1.6	7
143	A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity. Clinical and Translational Medicine, 2021, 11, e609.	1.7	7
144	18F-Fluorodeoxyglucose Positron Emission Tomography for the Detection of Myocardial Inflammation in Arrhythmogenic Left Ventricular Cardiomyopathy. Circulation: Cardiovascular Imaging, 0, , .	1.3	7

#	Article	IF	CITATIONS
145	Subcutaneous implantable cardioverter defibrillator indication in prevention of sudden cardiac death in difficult clinical situations: A French expert position paper. Archives of Cardiovascular Diseases, 2020, 113, 359-366.	0.7	6
146	Genetic mechanisms of mitral valve prolapse. Current Cardiovascular Risk Reports, 2008, 2, 463-467.	0.8	5
147	A consistent arrhythmogenic trait in Brugada syndrome cellular phenotype. Clinical and Translational Medicine, 2021, 11, e413.	1.7	5
148	Dose response to nadolol in congenital long QT syndrome. Heart Rhythm, 2021, 18, 1377-1383.	0.3	5
149	Quinidine therapy in children affected by Brugada syndrome: are we far from a safe alternative?. Cardiology in the Young, 2009, 19, 652-654.	0.4	4
150	Risk Stratification and Therapeutic Approach in Brugada Syndrome. Arrhythmia and Electrophysiology Review, 2012, 1, 17.	1.3	4
151	Early Repolarization Disease. Cardiac Electrophysiology Clinics, 2010, 2, 559-569.	0.7	2
152	Correlation of intracardiac electrogram with surface electrocardiogram in Brugada syndrome patients. Europace, 2014, 16, 908-913.	0.7	2
153	SCN5A Overlap Syndromes: an open-minded approach. Heart Rhythm, 2022, , .	0.3	2
154	Heritability of aortic valve stenosis and bicuspid enrichment in families with aortic valve stenosis. International Journal of Cardiology, 2022, 359, 91-98.	0.8	2
155	Process Mapping Strategies to Prevent Subcutaneous Implantable Cardioverterâ€Defibrillator Infections. Journal of Cardiovascular Electrophysiology, 0, , .	0.8	2
156	Cosegregation of the Marfan syndrome and the long QT syndrome in the same family leads to a severe cardiac phenotype. American Journal of Cardiology, 2003, 91, 635-637.	0.7	1
157	Brugada syndrome: where are you?. Europace, 2009, 11, 1260-1261.	0.7	1
158	Ajmaline challenge: To stop or not to stop…. Heart Rhythm, 2009, 6, 632-633.	0.3	1
159	Corrigendum to: 'HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies' [Europace 2011;13:1077-109, doi: 10.1093/europace/eur245]. Europace, 2012, 14, 277-277.	0.7	1
160	Reply to the Editor—PQ-Segment Depression in Short QT Syndrome Patients: A Novel Marker for Diagnosing Short QT Syndrome?. Heart Rhythm, 2014, 11, e8.	0.3	1
161	Reply to the Editor—Brugada syndrome is not an ECG. Heart Rhythm, 2016, 13, e292.	0.3	1
162	Sodium channel blocker challenge in Brugada syndrome: Role in risk stratification. International Journal of Cardiology, 2018, 264, 100-101.	0.8	1

#	Article	IF	CITATIONS
163	Adult-onset Still's disease revealed by a complete atrioventricular block, totally regressive under corticosteroid therapy. Journal of Cardiology Cases, 2020, 21, 110-113.	0.2	1
164	Dynamic changes in ventricular depolarization during exercise in patients with Brugada syndrome. PLoS ONE, 2020, 15, e0229078.	1.1	1
165	Copenhagen city heart study: more mermaids than Brugada's patients in Copenhagen. Europace, 2010, 12, 923-924.	0.7	Ο
166	Response to the Letter by Kattygnarath et al. Circulation: Cardiovascular Genetics, 2011, 4, .	5.1	0
167	SCN1Bb, atrial fibrillation, and Brugada syndrome: Just another brick in the wall …. Heart Rhythm, 2012, 9, 774-775.	0.3	Ο
168	R222Q Nav1.5 Mutation Associated with a New SCN5A-Related Cardiac Arrhythmia. Biophysical Journal, 2012, 102, 527a.	0.2	0
169	Brugada Syndrome and Nav1.5. Cardiac Electrophysiology Clinics, 2014, 6, 715-721.	0.7	0
170	TRPM4 Genetic Variants in Patients with Congenital Atrio-Ventricular Block. Biophysical Journal, 2014, 106, 762a.	0.2	0
171	163â€Genetic Modifiers in Carriers of the SCN5A E1784K Mutation with Variable Phenotypic Expression - Long QT3 / Brugada Syndrome Overlap Disease. Heart, 2014, 100, A94.1-A94.	1.2	0
172	Brugada syndrome: Keep an eye on the electrocardiogram. Heart Rhythm, 2018, 15, 1475-1476.	0.3	0
173	Number of electrocardiogram leads in the diagnosis of spontaneous Brugada syndrome. Archives of Cardiovascular Diseases, 2020, 113, 152-158.	0.7	0
174	Generation of human induced pluripotent stem cell lines from two patients affected by catecholamine-induced QT prolongation (CIQTP). Stem Cell Research, 2022, 59, 102649.	0.3	0
175	Outcome of Patients with Early Repolarization Pattern and Syncope. Heart Rhythm, 2022, , .	0.3	Ο