Patrice Codogno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GCN2 upregulates autophagy in response to short-term deprivation of a single essential amino acid. , 2022, 1, 119-142.		5
2	Overview of noncanonical autophagy. , 2021, , 41-67.		2
3	Monitoring lipophagy in kidney epithelial cells in response to shear stress. Methods in Cell Biology, 2021, 164, 11-25.	1.1	6
4	Mitochondrial morphodynamics alteration induced by influenza virus infection as a new antiviral strategy. PLoS Pathogens, 2021, 17, e1009340.	4.7	19
5	ATG4D is the main ATC8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death and Differentiation, 2021, 28, 2651-2672.	11.2	9
6	The autophagy protein ATG16L1 cooperates with IFT20 and INPP5E to regulate the turnover of phosphoinositides at the primary cilium. Cell Reports, 2021, 35, 109045.	6.4	16
7	When the autophagy protein ATG16L1 met the ciliary protein IFT20. Autophagy, 2021, 17, 1791-1793.	9.1	6
8	p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation. Cell Death and Disease, 2021, 12, 481.	6.3	63
9	Machinery, regulation and pathophysiological implications of autophagosome maturation. Nature Reviews Molecular Cell Biology, 2021, 22, 733-750.	37.0	223
10	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
11	Links between autophagy and tissue mechanics. Journal of Cell Science, 2021, 134, .	2.0	8
12	Primary cilium-dependent autophagy in the response to shear stress. Biochemical Society Transactions, 2021, 49, 2831-2839.	3.4	2
13	A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. Journal of Hepatology, 2020, 72, 528-538.	3.7	113
14	Human Cytomegalovirus Inhibits Autophagy of Renal Tubular Epithelial Cells and Promotes Cellular Enlargement. Frontiers in Cellular and Infection Microbiology, 2020, 10, 474.	3.9	2
15	Fluid flow-induced shear stress controls the metabolism of proximal tubule kidney epithelial cells through primary cilium-dependent lipophagy and mitochondria biogenesis Autophagy, 2020, 16, 2287-2288.	9.1	6
16	The primary cilium and lipophagy translate mechanical forces to direct metabolic adaptation of kidney epithelial cells. Nature Cell Biology, 2020, 22, 1091-1102.	10.3	45
17	p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy–lysosomal pathway and coordinate cell cycle and cell growth. Nature Cell Biology, 2020, 22, 1076-1090.	10.3	74
18	LC3-associated phagocytosis in myeloid cells, a fireman that restrains inflammation and liver fibrosis, via immunoreceptor inhibitory signaling. Autophagy, 2020. 16. 1526-1528.	9.1	13

#	Article	IF	CITATIONS
19	Primary cilium-dependent autophagy drafts PIK3C2A to generate PtdIns3P in response to shear stress. Autophagy, 2020, 16, 1143-1144.	9.1	7
20	PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nature Communications, 2020, 11, 294.	12.8	56
21	LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Science Translational Medicine, 2020, 12, .	12.4	48
22	Chemical targeting of NEET proteins reveals their function in mitochondrial morphodynamics. EMBO Reports, 2020, 21, e49019.	4.5	15
23	Autophagy in liver diseases: Time for translation?. Journal of Hepatology, 2019, 70, 985-998.	3.7	252
24	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	9.1	0
25	Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy. Autophagy, 2019, 15, 347-351.	9.1	4
26	Autophagy Is Required for Memory Formation and Reverses Age-Related Memory Decline. Current Biology, 2019, 29, 435-448.e8.	3.9	150
27	Monitoring of Autophagy and Cell Volume Regulation in Kidney Epithelial Cells in Response to Fluid Shear Stress. Methods in Molecular Biology, 2019, 1880, 331-340.	0.9	4
28	The primary cilium protein folliculin is part of the autophagy signaling pathway to regulate epithelial cell size in response to fluid flow. Cell Stress, 2019, 3, 100-109.	3.2	18
29	Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development (Cambridge), 2018, 145, .	2.5	143
30	Aspirin Recapitulates Features of Caloric Restriction. Cell Reports, 2018, 22, 2395-2407.	6.4	98
31	Endothelial autophagic flux hampers atherosclerotic lesion development. Autophagy, 2018, 14, 173-175.	9.1	24
32	Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages. Autophagy, 2018, 14, 1323-1334.	9.1	48
33	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
34	Autophagy: A Druggable Process. Annual Review of Pharmacology and Toxicology, 2017, 57, 375-398.	9.4	134
35	An iron hand over cancer stem cells. Autophagy, 2017, 13, 1465-1466.	9.1	43
36	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230

#	Article	IF	CITATIONS
37	Phosphatidylinositolâ€3â€phosphate in the regulation of autophagy membrane dynamics. FEBS Journal, 2017, 284, 1267-1278.	4.7	150
38	The Journey of the Autophagosome through Mammalian Cell Organelles and Membranes. Journal of Molecular Biology, 2017, 429, 497-514.	4.2	46
39	Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8675-E8684.	7.1	156
40	The Role of Autophagy in Cell Death. , 2016, , 139-154.		2
41	miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood, 2016, 128, 3125-3136.	1.4	71
42	TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge. Autophagy, 2016, 12, 614-617.	9.1	2
43	Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow. Nature Cell Biology, 2016, 18, 657-667.	10.3	127
44	Opening new doors in autophagy research: Patrice Codogno. Autophagy, 2016, 12, 1063-1068.	9.1	0
45	Fine-tuning autophagy: from transcriptional to posttranslational regulation. American Journal of Physiology - Cell Physiology, 2016, 311, C351-C362.	4.6	33
46	Autophagy transduces physical constraints into biological responses. International Journal of Biochemistry and Cell Biology, 2016, 79, 419-426.	2.8	16
47	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
48	<i>Legionella pneumophila</i> S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1901-1906.	7.1	115
49	Autophagy and Inflammation. , 2016, , 173-184.		1
50	Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation. Oncotarget, 2016, 7, 44142-44160.	1.8	17
51	Development of autophagy inducers in clinical medicine. Journal of Clinical Investigation, 2015, 125, 14-24.	8.2	274
52	Regulation of Autophagy by Amino Acids. , 2015, , 55-68.		1
53	Unsaturated fatty acids induce non anonical autophagy. EMBO Journal, 2015, 34, 1025-1041.	7.8	147
54	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	7.8	1,012

#	Article	IF	CITATIONS
55	The Pro-apoptotic STK38 Kinase Is a New Beclin1 Partner Positively Regulating Autophagy. Current Biology, 2015, 25, 2479-2492.	3.9	47
56	Constitutive autophagy contributes to resistance to TP53-mediated apoptosis in Epstein-Barr virus-positive latency III B-cell lymphoproliferations. Autophagy, 2015, 11, 2275-2287.	9.1	28
57	Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids, 2015, 47, 2037-2063.	2.7	133
58	Autophagy and Tumor Cell Metabolism. , 2015, , 45-63.		1
59	Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma. Oncotarget, 2015, 6, 30149-30164.	1.8	43
60	BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4115-4120.	7.1	76
61	Autophagy in Necrosis: A Force for Survival. , 2014, , 233-252.		0
62	Autophagy: A Multifaceted Partner in Liver Fibrosis. BioMed Research International, 2014, 2014, 1-7.	1.9	77
63	Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A. Molecular Cell, 2014, 53, 710-725.	9.7	412
64	Reactive Oxygen Species, AMP-activated Protein Kinase, and the Transcription Cofactor p300 Regulate α-Tubulin Acetyltransferase-1 (αTAT-1/MEC-17)-dependent Microtubule Hyperacetylation during Cell Stress. Journal of Biological Chemistry, 2014, 289, 11816-11828.	3.4	75
65	Autophagy and Autophagic Flux in Tumor Cells. Methods in Enzymology, 2014, 543, 73-88.	1.0	24
66	Cancer stem cells and autophagy: Facts and Perspectives. Journal of Cancer Stem Cell Research, 2014, 2, 1.	1.1	12
67	Autophagy regulation and its role in cancer. Seminars in Cancer Biology, 2013, 23, 361-379.	9.6	215
68	Recycling in sight. Nature, 2013, 501, 40-42.	27.8	3
69	Autophagy in the liver. Journal of Hepatology, 2013, 59, 389-391.	3.7	35
70	Functional interaction between autophagy and ciliogenesis. Nature, 2013, 502, 194-200.	27.8	357
71	The Herpes Simplex Virus 1 Us11 Protein Inhibits Autophagy through Its Interaction with the Protein Kinase PKR. Journal of Virology, 2013, 87, 859-871.	3.4	139
72	PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins. Neurobiology of Aging, 2013, 34, 770-790.	3.1	46

#	Article	IF	CITATIONS
73	Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Research, 2013, 23, 508-523.	12.0	340
74	Autophagy and microtubules – new story, old players. Journal of Cell Science, 2013, 126, 1071-1080.	2.0	179
75	The Mechanism and Physiological Function of Macroautophagy. Journal of Innate Immunity, 2013, 5, 427-433.	3.8	177
76	Emerging regulation and functions of autophagy. Nature Cell Biology, 2013, 15, 713-720.	10.3	1,014
77	Non-canonical Autophagy: Facts and Prospects. Current Pathobiology Reports, 2013, 1, 263-271.	3.4	18
78	Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy, 2013, 9, 850-860.	9.1	59
79	Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy, 2013, 9, 714-729.	9.1	163
80	Autophagy modulates cell migration and \hat{l}^21 integrin membrane recycling. Cell Cycle, 2013, 12, 3317-3328.	2.6	94
81	Autophagy, Cell Death, and Cancer. , 2013, , 359-390.		0
82	Autophagy and Inflammation. , 2013, , 1-14.		0
83	Micronucleophagy: A new mechanism to protect against chromosomal instability?. Cell Cycle, 2012, 11, 645-645.	2.6	8
84	Autophagy Is a Protective Mechanism for Human Melanoma Cells under Acidic Stress. Journal of Biological Chemistry, 2012, 287, 30664-30676.	3.4	153
85	The Human Cytomegalovirus Protein TRS1 Inhibits Autophagy via Its Interaction with Beclin 1. Journal of Virology, 2012, 86, 2571-2584.	3.4	143
86	The roles of BECN1 and autophagy in cancer are context dependent. Autophagy, 2012, 8, 1853-1855.	9.1	43
87	Autophagy, signaling and obesity. Pharmacological Research, 2012, 66, 513-525.	7.1	63
88	New Targets for Acetylation in Autophagy. Science Signaling, 2012, 5, pe29.	3.6	30
89	Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery, 2012, 11, 709-730.	46.4	1,285
90	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122

#	Article	IF	CITATIONS
91	Abnormal Activation of Autophagy-Induced Crinophagy in Paneth Cells From Patients With Crohn's Disease. Gastroenterology, 2012, 142, 1097-1099.e4.	1.3	83
92	Canonical and non-canonical autophagy: variations on a common theme of self-eating?. Nature Reviews Molecular Cell Biology, 2012, 13, 7-12.	37.0	479
93	Autophagy is a survival force via suppression of necrotic cell death. Experimental Cell Research, 2012, 318, 1304-1308.	2.6	70
94	Autophagosomes and human diseases. International Journal of Biochemistry and Cell Biology, 2011, 43, 460-464.	2.8	65
95	Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 2011, 7, 1448-1461.	9.1	103
96	Drug enhanced autophagy to fight mutant protein overload. Journal of Hepatology, 2011, 54, 1066-1068.	3.7	7
97	Lysosome positioning coordinates mTORC1 activity and autophagy. Nature Cell Biology, 2011, 13, 342-344.	10.3	51
98	Compartmentalized regulation of autophagy regulators: fine-tuning AMBRA1 by Bcl-2. EMBO Journal, 2011, 30, 1185-1186.	7.8	12
99	Autophagy: Regulation by Energy Sensing. Current Biology, 2011, 21, R227-R229.	3.9	59
100	A New Fluorescence-Based Assay for Autophagy. Chemistry and Biology, 2011, 18, 940-941.	6.0	7
101	Regulation of Autophagy by Sphingolipids. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 844-853.	1.7	48
102	Regulation of autophagy by extracellular matrix glycoproteins in HeLa cells. Autophagy, 2011, 7, 27-39.	9.1	26
103	Autophagic cell death: Loch Ness monster or endangered species?. Autophagy, 2011, 7, 457-465.	9.1	298
104	Beclin 1 or not Beclin 1 Autophagy, 2011, 7, 671-672.	9.1	19
105	A comprehensive glossary of autophagy-related molecules and processes (2 nd edition). Autophagy, 2011, 7, 1273-1294.	9.1	255
106	Ca ²⁺ /Calmodulin-Dependent Kinase (CaMK) Signaling via CaMKI and AMP-Activated Protein Kinase Contributes to the Regulation of WIPI-1 at the Onset of Autophagy. Molecular Pharmacology, 2011, 80, 1066-1075.	2.3	75
107	Overview of macroautophagy regulation in mammalian cells. Cell Research, 2010, 20, 748-762.	12.0	437

Signaling in Autophagy Related Pathways. , 2010, , 2583-2588.

0

#	Article	IF	CITATIONS
109	A comprehensive glossary of autophagy-related molecules and processes. Autophagy, 2010, 6, 438-448.	9.1	144
110	Starvation-induced Hyperacetylation of Tubulin Is Required for the Stimulation of Autophagy by Nutrient Deprivation. Journal of Biological Chemistry, 2010, 285, 24184-24194.	3.4	172
111	The Bcl-2 Homology Domain 3 Mimetic Gossypol Induces Both Beclin 1-dependent and Beclin 1-independent Cytoprotective Autophagy in Cancer Cells. Journal of Biological Chemistry, 2010, 285, 25570-25581.	3.4	112
112	Evidence for the interplay between JNK and p53-DRAM signaling pathways in the regulation of autophagy. Autophagy, 2010, 6, 153-154.	9.1	136
113	Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. American Journal of Physiology - Cell Physiology, 2010, 298, C776-C785.	4.6	168
114	Regulation of cell death by sphingosine 1-phosphate lyase. Autophagy, 2010, 6, 426-427.	9.1	5
115	GTP: Gatekeeper for Autophagy. Molecular Cell, 2010, 39, 485-486.	9.7	4
116	Prion protein: From physiology to cancer biology. Cancer Letters, 2010, 290, 1-23.	7.2	96
117	Autophagy: A Potential Link between Obesity and Insulin Resistance. Cell Metabolism, 2010, 11, 449-451.	16.2	99
118	Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2010, 285, 10850-10861.	3.4	942
119	Role of JNK1-dependent Bcl-2 Phosphorylation in Ceramide-induced Macroautophagy. Journal of Biological Chemistry, 2009, 284, 2719-2728.	3.4	240
120	Disruption of Sphingosine 1-Phosphate Lyase Confers Resistance to Chemotherapy and Promotes Oncogenesis through Bcl-2/Bcl-xL Upregulation. Cancer Research, 2009, 69, 9346-9353.	0.9	103
121	Ceramide-induced autophagy: To junk or to protect cells?. Autophagy, 2009, 5, 558-560.	9.1	79
122	Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy, 2009, 5, 766-783.	9.1	118
123	c-Jun NH2-Terminal Kinase Activation Is Essential for DRAM-Dependent Induction of Autophagy and Apoptosis in 2-Methoxyestradiol–Treated Ewing Sarcoma Cells. Cancer Research, 2009, 69, 6924-6931.	0.9	71
124	Autophagy Induction by the Pathogen Receptor CD46. Cell Host and Microbe, 2009, 6, 354-366.	11.0	227
125	Autophagy: Regulation and role in disease. Critical Reviews in Clinical Laboratory Sciences, 2009, 46, 210-240.	6.1	176
126	Chapter 4 Assaying of Autophagic Protein Degradation. Methods in Enzymology, 2009, 452, 47-61.	1.0	73

8

#	Article	IF	CITATIONS
127	Macroautophagy Signaling and Regulation. Current Topics in Microbiology and Immunology, 2009, 335, 33-70.	1.1	71
128	Nutrient sensing: TOR's Ragtime. Nature Cell Biology, 2008, 10, 881-883.	10.3	23
129	Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 2008, 10, 676-687.	10.3	1,025
130	Lost to translation: when autophagy targets mature ribosomes. Trends in Cell Biology, 2008, 18, 311-314.	7.9	63
131	Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie, 2008, 90, 313-323.	2.6	460
132	In vivo effect of an antilipolytic drug (3,5′-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver. Biochemical and Biophysical Research Communications, 2008, 366, 786-792.	2.1	19
133	Autophagy: A Sweet Process in Diabetes. Cell Metabolism, 2008, 8, 275-276.	16.2	52
134	What is the role of autophagy in HIV-1 infection?. Autophagy, 2008, 4, 273-275.	9.1	22
135	Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy, 2008, 4, 46-53.	9.1	116
136	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
137	Non-canonical autophagy: An exception or an underestimated form of autophagy?. Autophagy, 2008, 4, 1083-1085.	9.1	70
138	Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy, 2008, 4, 783-791.	9.1	158
139	Sphingolipids in Macroautophagy. Methods in Molecular Biology, 2008, 445, 159-173.	0.9	29
140	Autophagy and CD4 ⁺ T lymphocyte destruction by HIV-1. Autophagy, 2007, 3, 32-34.	9.1	26
141	AMP-Activated Protein Kinase and Autophagy. Autophagy, 2007, 3, 238-240.	9.1	146
142	Macroautophagy as a Target of Cancer Therapy. Current Cancer Therapy Reviews, 2007, 3, 199-208.	0.3	0
143	Is Autophagy the Key Mechanism by Which the Sphingolipid Rheostat Controls the Cell Fate Decision?. Autophagy, 2007, 3, 45-47.	9.1	86
144	Macroautophagy: Protector in the Diabetes Drama?. Autophagy, 2007, 3, 522-525.	9.1	28

#	Article	IF	CITATIONS
145	Regulation of Autophagy by NF-kappaB Transcription Factor and Reactives Oxygen Species. Autophagy, 2007, 3, 390-392.	9.1	91
146	Autophagy joins the game to regulate NF- \hat{I}^{2} B signaling pathways. Cell Research, 2007, 17, 576-577.	12.0	25
147	Involvement of autophagy in viral infections: antiviral function and subversion by viruses. Journal of Molecular Medicine, 2007, 85, 811-23.	3.9	76
148	Autophagy and Autophagic Cell Death. , 2007, , 93-107.		2
149	Autophagy and Caspase-Independent Cell Death: p19ARF Enters the Game. Developmental Cell, 2006, 10, 688-689.	7.0	5
150	Signalling and autophagy regulation in health, aging and disease. Molecular Aspects of Medicine, 2006, 27, 411-425.	6.4	233
151	Atg5: more than an autophagy factor. Nature Cell Biology, 2006, 8, 1045-1047.	10.3	109
152	Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1765, 101-125.	7.4	61
153	Autophagy Signaling and the Cogwheels of Cancer. Autophagy, 2006, 2, 67-73.	9.1	132
154	AMP-activated Protein Kinase and the Regulation of Autophagic Proteolysis. Journal of Biological Chemistry, 2006, 281, 34870-34879.	3.4	406
155	Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. Journal of Clinical Investigation, 2006, 116, 2161-2172.	8.2	389
156	Regulation of Autophagy by Sphingosine Kinase 1 and Its Role in Cell Survival during Nutrient Starvation. Journal of Biological Chemistry, 2006, 281, 8518-8527.	3.4	230
157	NF-κB Activation Represses Tumor Necrosis Factor-α-induced Autophagy. Journal of Biological Chemistry, 2006, 281, 30373-30382.	3.4	412
158	PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene, 2005, 24, 7503-7513.	5.9	88
159	Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, 2005, 25, 1025-1040.	2.3	1,533
160	Autophagy and p70S6 Kinase. Autophagy, 2005, 1, 59-61.	9.1	101
161	Defect of N-Glycosylation Is Not Directly Related to Congenital Disorder of Glycosylation Ia Fibroblast Sensitivity to Staurosporine-Induced Cell Death. Pediatric Research, 2005, 58, 254-257.	2.3	1
162	Amino Acid Signaling and the Control of Autophagy. Oxidative Stress and Disease, 2005, , .	0.3	0

#	Article	IF	CITATIONS
163	Analyses of Gα-Interacting Protein and Activator of G-Protein-Signaling-3 Functions in Macroautophagy. Methods in Enzymology, 2004, 390, 17-31.	1.0	52
164	Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. Journal of Biological Chemistry, 2004, 279, 18384-18391.	3.4	379
165	Regulation and role of autophagy in mammalian cells. International Journal of Biochemistry and Cell Biology, 2004, 36, 2445-2462.	2.8	581
166	Autophagy: a barrier or an adaptive response to cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2003, 1603, 113-128.	7.4	165
167	The nucleotide-sugar transporter family: a phylogenetic approach. Biochimie, 2003, 85, 245-260.	2.6	51
168	A Deficiency in Dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl α3-Glucosyltransferase Defines a New Subtype of Congenital Disorders of Glycosylation. Journal of Biological Chemistry, 2003, 278, 9962-9971.	3.4	78
169	Activity and tissue distribution of splice variants of Â6-fucosyltransferase in human embryogenesis. Glycobiology, 2003, 14, 13-25.	2.5	10
170	Amino Acids Interfere with the ERK1/2-dependent Control of Macroautophagy by Controlling the Activation of Raf-1 in Human Colon Cancer HT-29 Cells. Journal of Biological Chemistry, 2003, 278, 16667-16674.	3.4	247
171	The G-protein Regulator AGS3 Controls an Early Event during Macroautophagy in Human Intestinal HT-29 Cells. Journal of Biological Chemistry, 2003, 278, 20995-21002.	3.4	65
172	Increase in Ceramide Level Alters the Lysosomal Targeting of Cathepsin D prior to Onset of Apoptosis in HT-29 Colon Cancer Cells. Biological Chemistry, 2002, 383, 989-99.	2.5	27
173	Celecoxib Induces Apoptosis by Inhibiting 3-Phosphoinositide-dependent Protein Kinase-1 Activity in the Human Colon Cancer HT-29 Cell Line. Journal of Biological Chemistry, 2002, 277, 27613-27621.	3.4	262
174	Congenital Disorders of Glycosylation Type Ig Is Defined by a Deficiency in Dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl Mannosyltransferase. Journal of Biological Chemistry, 2002, 277, 25815-25822.	3.4	87
175	Common Origin and Evolution of Glycosyltransferases Using Dol-P-monosaccharides as Donor Substrate. Molecular Biology and Evolution, 2002, 19, 1451-1463.	8.9	84
176	Increased Biosynthesis of Glycosphingolipids in Congenital Disorder of Glycosylation Ia (CDG-Ia) Fibroblasts. Pediatric Research, 2002, 52, 645-651.	2.3	12
177	Diversity of Signaling Controls of Macroautophagy in Mammalian Cells Cell Structure and Function, 2002, 27, 431-441.	1.1	67
178	Autophagy Delays Sulindac Sulfide-Induced Apoptosis in the Human Intestinal Colon Cancer Cell Line HT-29. Experimental Cell Research, 2001, 268, 139-149.	2.6	130
179	The Tumor Suppressor PTEN Positively Regulates Macroautophagy by Inhibiting the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway. Journal of Biological Chemistry, 2001, 276, 35243-35246.	3.4	514
180	Glucose persistence on high-mannose oligosaccharides selectively inhibits the macroautophagic sequestration of N-linked glycoproteins. Biochemical Journal, 2000, 345, 459.	3.7	3

#	Article	IF	CITATIONS
181	Erk1/2-dependent Phosphorylation of Gα-interacting Protein Stimulates Its GTPase Accelerating Activity and Autophagy in Human Colon Cancer Cells. Journal of Biological Chemistry, 2000, 275, 39090-39095.	3.4	265
182	Distinct Classes of Phosphatidylinositol 3′-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells. Journal of Biological Chemistry, 2000, 275, 992-998.	3.4	1,047
183	Isoforms of the Lutheran/Basal Cell Adhesion Molecule Glycoprotein Are Differentially Delivered in Polarized Epithelial Cells. Journal of Biological Chemistry, 1999, 274, 31903-31908.	3.4	47
184	Subcellular localization of the Gαi3 protein and G alpha interacting protein, two proteins involved in the control of macroautophagy in human colon cancer HT-29 cells. Biochemical Journal, 1999, 337, 289.	3.7	10
185	Subcellular localization of the Gαi3 protein and G alpha interacting protein, two proteins involved in the control of macroautophagy in human colon cancer HT-29 cells. Biochemical Journal, 1999, 337, 289-295.	3.7	37
186	Cytosol-to-lysosome Transport of Free Polymannose-type Oligosaccharides. Journal of Biological Chemistry, 1999, 274, 13547-13555.	3.4	61
187	Transfer of Free Polymannose-type Oligosaccharides from the Cytosol to Lysosomes in Cultured Human Hepatocellular Carcinoma HEPC2 Cells. Journal of Cell Biology, 1997, 136, 45-59.	5.2	77
188	Control of the Expression and Activity of the Cα-interacting Protein (GAIP) in Human Intestinal Cells. Journal of Biological Chemistry, 1997, 272, 24599-24603.	3.4	53
189	Evidence for a Dual Control of Macroautophagic Sequestration and Intracellular Trafficking of N-Linked Glycoproteins by the Trimeric Gi3Protein in HT-29 Cells. Biochemical and Biophysical Research Communications, 1997, 235, 166-170.	2.1	16
190	Signal Transduction Pathways in Macroautophagy. Cellular Signalling, 1997, 9, 125-130.	3.6	42
191	Differentiation-induced changes in the content, secretion, and subcellular distribution of lysosomal cathepsins in the human colon cancer HT-29 cell line. Cell and Tissue Research, 1997, 289, 109-117.	2.9	27
192	The Metabolism of Sphingo(glyco)lipids is Correlated with the Differentiation-Dependent Autophagic Pathway in HT-29 Cells. FEBS Journal, 1996, 237, 454-459.	0.2	26
193	Guanine Nucleotide Exchange on Heterotrimeric Gi3 Protein Controls Autophagic Sequestration in HT-29 Cells. Journal of Biological Chemistry, 1996, 271, 28593-28600.	3.4	102
194	A Heterotrimeric G i3-protein Controls Autophagic Sequestration in the Human Colon Cancer Cell Line HT-29. Journal of Biological Chemistry, 1995, 270, 13-16.	3.4	106
195	Dual mechanism of laminin modulation of ecto-5′-nucleotidase activity. Journal of Cellular Biochemistry, 1993, 52, 266-274.	2.6	30
196	Forskolin Blocks the Apical Expression of Dipeptidyl Peptidase IV in Caco-2 Cells and Induces Its Retention in Lamp-1-Containing Vesicles. Experimental Cell Research, 1993, 209, 277-287.	2.6	14
197	hnRNP G: sequence and characterization of a glycosylated RNA-binding protein. Nucleic Acids Research, 1993, 21, 4210-4217.	14.5	145
198	Enzymatic activity and in vivo distribution of 5′-nucleotidase, an extracellular matrix binding glycoprotein, during the development of chicken striated muscle. Experimental Cell Research, 1992, 203, 62-71.	2.6	15

#	Article	IF	CITATIONS
199	Swainsonine is a useful tool to monitor the intracellular traffic of N-linked glycoproteins as a function of the state of enterocytic differentiation of HT-29 cells. FEBS Journal, 1992, 205, 1169-1174.	0.2	10
200	Relationship between the content of [14C]glucose-derived monosaccharides in glycoprotein oligosaccharide chains and the state of enterocytic differentiation of HT-29 cells. Carbohydrate Research, 1992, 236, 97-105.	2.3	0
201	Evidence for the presence of complex high-molecular mass N-linked oligosaccharides in intranuclear gylcoproteins from hela cells. Journal of Cellular Biochemistry, 1992, 50, 93-102.	2.6	9
202	A Mr 72K cell surface concanavalin A binding glycoprotein is specifically involved in the spreading of chick embryo fibroblasts onto laminin substrate. Experimental Cell Research, 1991, 192, 236-242.	2.6	7
203	Intracellular events are responsible for the differential expression of fibronectin on the fibroblast surface during chick embyro development. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1093, 13-19.	4.1	3
204	Increased UDP-GlcNAc: α-mannoside β(1 → 4) N-acetylglucosaminyltransferase activity during chick embryo development. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1054, 149-153.	4.1	8
205	Processing of asparagine-linked oligosaccharides is an early biochemical marker of the enterocytic differentiation of HT-29 cells. Journal of Cellular Biochemistry, 1989, 41, 13-23.	2.6	17
206	Role of cell surface glycoproteins in embryo cell adhesion to extracellular matrix. Biochemical Society Transactions, 1989, 17, 27-28.	3.4	1
207	Concanavalin A-induced impairment of fibroblast spreading on laminin but not on fibronectin. Journal of Cellular Physiology, 1988, 136, 463-470.	4.1	11
208	Polyclonal and monoclonal antibodies against chicken gizzard 5â€2-nucleotidase inhibit the spreading process of chicken embryonic fibroblasts on laminin substratum. Experimental Cell Research, 1988, 174, 344-354.	2.6	38
209	Evidence for a dual mechanism of chick embryo fibroblast adhesion on fibronectin and laminin substrata. Experimental Cell Research, 1987, 169, 478-489.	2.6	27
210	Modification of the N-linked oligosaccharides in cell surface glycoproteins during chick embryo development. A using lectin affinity and a high resolution chromatography study. FEBS Journal, 1985, 149, 453-460.	0.2	28
211	Influence of Concanavalin A on 3-O-methylglucose uptake in cultured chick embryo fibroblasts. Differentiation, 1984, 27, 192-195.	1.9	0
212	Changes in protein glycosylation during chick embryo development. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 763, 265-275.	4.1	14
213	Changes in cell-surface sialic acid content during chick embryo development. Mechanisms of Ageing and Development, 1983, 23, 307-314.	4.6	14