Carlo Viscomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox Signaling and Stress in Inherited Myopathies. Antioxidants and Redox Signaling, 2022, 37, 301-323.	5.4	5
2	Mitochondrial Neurodegeneration. Cells, 2022, 11, 637.	4.1	29
3	Mitochondrial Cytochrome c Oxidase Defects Alter Cellular Homeostasis of Transition Metals. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	5
4	Molecular Research on Mitochondrial Dysfunction. International Journal of Molecular Sciences, 2022, 23, 6845.	4.1	1
5	Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Molecular Psychiatry, 2021, 26, 5733-5750.	7.9	79
6	Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy. Cell Death and Differentiation, 2021, 28, 123-138.	11.2	29
7	Structural basis for a complex I mutation that blocks pathological ROS production. Nature Communications, 2021, 12, 707.	12.8	71
8	Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nature Communications, 2021, 12, 2103.	12.8	16
9	Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biology, 2021, 19, e3001166.	5.6	95
10	DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Research, 2021, 49, 5230-5248.	14.5	15
11	Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines, 2021, 9, 833.	3.2	17
12	Mitochondrial DNA heteroplasmy is modulated during oocyte development propagating mutation transmission. Science Advances, 2021, 7, eabi5657.	10.3	22
13	Physical and Functional Cross Talk Between Endo-Sarcoplasmic Reticulum and Mitochondria in Skeletal Muscle. Antioxidants and Redox Signaling, 2020, 32, 873-883.	5.4	27
14	Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148137.	1.0	46
15	Opa1 Overexpression Protects from Early-Onset Mpv17â^'/â^'-Related Mouse Kidney Disease. Molecular Therapy, 2020, 28, 1918-1930.	8.2	9
16	A Single Intravenous Injection of AAV-PHP.B-hNDUFS4 Ameliorates the Phenotype of Ndufs4 Mice. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1071-1078.	4.1	32
17	Metabolic effects of bezafibrate in mitochondrial disease. EMBO Molecular Medicine, 2020, 12, e11589.	6.9	45
18	Strategies for fighting mitochondrial diseases. Journal of Internal Medicine, 2020, 287, 665-684.	6.0	47

#	Article	IF	CITATIONS
19	Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 3534-3548.	3.6	15
20	Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature, 2019, 573, 130-134.	27.8	311
21	Breathe: Your Mitochondria Will Do the Rest… If They Are Healthy!. Cell Metabolism, 2019, 30, 628-629.	16.2	4
22	Experimental Therapies. , 2019, , 357-370.		0
23	The homeostatic dynamics of feeding behaviour identify novel mechanisms of anorectic agents. PLoS Biology, 2019, 17, e3000482.	5.6	5
24	APOPT 1/ COA 8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Molecular Medicine, 2019, 11, .	6.9	19
25	Long-Term Sustained Effect of Liver-Targeted Adeno-Associated Virus Gene Therapy for Mitochondrial Neurogastrointestinal Encephalomyopathy. Human Gene Therapy, 2018, 29, 708-718.	2.7	39
26	Lifelong reduction in complex IV induces tissueâ€ s pecific metabolic effects but does not reduce lifespan or healthspan in mice. Aging Cell, 2018, 17, e12769.	6.7	14
27	SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2131-2142.	3.8	24
28	Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 2018, 24, 1691-1695.	30.7	215
29	Towards a therapy for mitochondrial disease: an update. Biochemical Society Transactions, 2018, 46, 1247-1261.	3.4	46
30	Rapamycin rescues mitochondrial myopathy via coordinated activation of autophagy and lysosomal biogenesis. EMBO Molecular Medicine, 2018, 10, .	6.9	86
31	Control of mitochondrial superoxide production by reverse electron transport at complex I. Journal of Biological Chemistry, 2018, 293, 9869-9879.	3.4	204
32	Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy. Cell Metabolism, 2018, 28, 764-775.e5.	16.2	70
33	Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nature Structural and Molecular Biology, 2018, 25, 548-556.	8.2	202
34	Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1422-1435.	3.8	22
35	MtDNAâ€maintenance defects: syndromes and genes. Journal of Inherited Metabolic Disease, 2017, 40, 587-599.	3.6	145
36	Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metabolism, 2017, 25, 182-196.	16.2	250

#	Article	IF	CITATIONS
37	AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Therapy, 2017, 24, 661-667.	4.5	50
38	TTC19 Plays a Husbandry Role on UQCRFS1 Turnover in the Biogenesis of Mitochondrial Respiratory Complex III. Molecular Cell, 2017, 67, 96-105.e4.	9.7	64
39	Quantitative proteomics suggests metabolic reprogramming during ETHE1 deficiency. Proteomics, 2016, 16, 1166-1176.	2.2	12
40	Toward a therapy for mitochondrial disease. Biochemical Society Transactions, 2016, 44, 1483-1490.	3.4	26
41	Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 705-715.	3.8	21
42	Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect. Data in Brief, 2016, 7, 1004-1009.	1.0	1
43	FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology, 2016, 87, 2290-2299.	1.1	167
44	Effects of ketosis in mitochondrial myopathy: potential benefits of a mitotoxic diet. EMBO Molecular Medicine, 2016, 8, 1231-1233.	6.9	4
45	Defective <scp>PITRM</scp> 1 mitochondrial peptidase is associated with AÎ ² amyloidotic neurodegeneration. EMBO Molecular Medicine, 2016, 8, 176-190.	6.9	60
46	Mitochondrial Genes and Neurodegenerative Disease. , 2016, , 81-106.		1
47	Reply to Dr MichaudetÂal European Journal of Neurology, 2015, 22, e78-e78.	3.3	0
48	The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage. Cell Metabolism, 2015, 21, 834-844.	16.2	350
49	Emerging concepts in the therapy of mitochondrial disease. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 544-557.	1.0	96
50	Opa1 Overexpression Ameliorates the Phenotype of Two Mitochondrial Disease Mouse Models. Cell Metabolism, 2015, 21, 845-854.	16.2	202
51	NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease. Cell Metabolism, 2014, 19, 1042-1049.	16.2	293
52	Gene Therapy Using a Liver-targeted AAV Vector Restores Nucleoside and Nucleotide Homeostasis in a Murine Model of MNGIE. Molecular Therapy, 2014, 22, 901-907.	8.2	55
53	Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metabolism, 2014, 19, 1034-1041.	16.2	211
54	AAV-mediated Liver-specific MPV17 Expression Restores mtDNA Levels and Prevents Diet-induced Liver Failure. Molecular Therapy, 2014, 22, 10-17.	8.2	47

#	Article	IF	CITATIONS
55	Complex IV-deficient <i>Surf1</i> â^'/â^' mice initiate mitochondrial stress responses. Biochemical Journal, 2014, 462, 359-371.	3.7	89
56	Improved insulin sensitivity associated with reduced mitochondrial complex IV assembly and activity. FASEB Journal, 2013, 27, 1371-1380.	0.5	29
57	Decreased <i>in vitro</i> Mitochondrial Function is Associated with Enhanced Brain Metabolism, Blood Flow, and Memory in Surfl-Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1605-1611.	4.3	35
58	Proteome adaptations in Ethe1-deficient mice indicate a role in lipid catabolism and cytoskeleton organization via post-translational protein modifications. Bioscience Reports, 2013, 33, .	2.4	31
59	Effective AAVâ€mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Molecular Medicine, 2012, 4, 1008-1014.	6.9	72
60	Morphologic evidence of diffuse vascular damage in human and in the experimental model of ethylmalonic encephalopathy. Journal of Inherited Metabolic Disease, 2012, 35, 451-458.	3.6	35
61	Chronic Exposure to Sulfide Causes Accelerated Degradation of Cytochrome c Oxidase in Ethylmalonic Encephalopathy. Antioxidants and Redox Signaling, 2011, 15, 353-362.	5.4	80
62	In Vivo Correction of COX Deficiency by Activation of the AMPK/PGC-1α Axis. Cell Metabolism, 2011, 14, 80-90.	16.2	245
63	Response to Drs. Djouadi and Bastin. Cell Metabolism, 2011, 14, 717.	16.2	1
64	Hypoxic and hypercapnic challenges unveil respiratory vulnerability of Surf1 knockout mice, an animal model of Leigh syndrome. Mitochondrion, 2011, 11, 413-420.	3.4	11
65	Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene <i>Hcn4</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1705-1710.	7.1	240
66	Evolution Meets Disease: Penetrance and Functional Epistasis of Mitochondrial tRNA Mutations. PLoS Genetics, 2011, 7, e1001379.	3.5	51
67	Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nature Medicine, 2010, 16, 869-871.	30.7	136
68	Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain, 2010, 133, 1428-1437.	7.6	70
69	Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice. Human Molecular Genetics, 2009, 18, 12-26.	2.9	87
70	Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Human Molecular Genetics, 2009, 18, 1058-1064.	2.9	70
71	Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nature Medicine, 2009, 15, 200-205.	30.7	358
72	Lactic Acidosis in a Newborn With Adrenal Calcifications. Pediatric Research, 2009, 66, 317-322.	2.3	5

#	Article	IF	CITATIONS
73	A novel heteroplasmic tRNASer(UCN) mtDNA point mutation associated with progressive external ophthalmoplegia and hearing loss. Neuromuscular Disorders, 2007, 17, 681-683.	0.6	16
74	MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nature Genetics, 2006, 38, 570-575.	21.4	380
75	Interaction of the Pacemaker Channel HCN1 with Filamin A. Journal of Biological Chemistry, 2004, 279, 43847-43853.	3.4	91
76	Heteromeric HCN1–HCN4 Channels: A Comparison with Native Pacemaker Channels from the Rabbit Sinoatrial Node. Journal of Physiology, 2003, 549, 347-359.	2.9	185
77	The short N-terminus is required for functional expression of the virus-encoded miniature K+channel Kcv. FEBS Letters, 2002, 530, 65-69.	2.8	39
78	Integrated Allosteric Model of Voltage Gating of Hcn Channels. Journal of General Physiology, 2001, 117, 519-532.	1.9	144
79	C Terminus-mediated Control of Voltage and cAMP Gating of Hyperpolarization-activated Cyclic Nucleotide-gated Channels. Journal of Biological Chemistry, 2001, 276, 29930-29934.	3.4	58
80	Effects of dronedarone on Acetylcholine-activated current in rabbit SAN cells. British Journal of Pharmacology, 2000, 130, 1315-1320.	5.4	37
81	Kinetic and ionic properties of the human HCN2 pacemaker channel. Pflugers Archiv European Journal of Physiology, 2000, 439, 618-626.	2.8	37
82	Kinetic and ionic properties of the human HCN2 pacemaker channel. Pflugers Archiv European Journal of Physiology, 2000, 439, 618-626.	2.8	52
83	CG7630 is the <i>Drosophila melanogaster</i> homolog of the cytochrome <i>c</i> oxidase subunit	4.5	7