
Philippe Leclere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5024165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale Electrical Investigation of Transparent Conductive Electrodes Based on Silver Nanowire Network. Advanced Materials Interfaces, 2022, 9, .	3.7	7
2	TCO-free perovskite solar cells in taking advantage of SWCNT/TiO2 core/shell sponge. Journal of Science: Advanced Materials and Devices, 2022, 7, 100440.	3.1	0
3	A simple method for enhancing the electrical properties of silver nanowire transparent conductive electrodes. Materials Letters, 2021, 287, 129243.	2.6	4
4	On the Nanomechanical and Viscoelastic Properties of Coatings Made of Recombinant Sea Star Adhesive Proteins. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	6
5	Disentangling the Roles of Functional Domains in the Aggregation and Adsorption of the Multimodular Sea Star Adhesive Protein Sfp1. Marine Biotechnology, 2021, 23, 724-735.	2.4	3
6	Microwave Atmospheric Plasma: A Versatile and Fast Way to Confer Antimicrobial Activity toward Direct Chitosan Immobilization onto Poly(lactic acid) Substrate. ACS Applied Bio Materials, 2021, 4, 7445-7455.	4.6	4
7	Investigating the relationship between the mechanical properties of plasma polymer-like thin films and their glass transition temperature. Soft Matter, 2021, 17, 10032-10041.	2.7	7
8	Solvent-Free Design of Biobased Non-isocyanate Polyurethanes with Ferroelectric Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 14946-14958.	6.7	11
9	Nanoscale Studies at the Early Stage of Water-Induced Degradation of CH ₃ NH ₃ Pbl ₃ Perovskite Films Used for Photovoltaic Applications. ACS Applied Nano Materials, 2020, 3, 8268-8277.	5.0	5
10	The wrinkling concept applied to plasmaâ€deposited polymerâ€like thin films: A promising method for the fabrication of flexible electrodes. Plasma Processes and Polymers, 2020, 17, 2000119.	3.0	9
11	Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings. Acta Biomaterialia, 2020, 112, 62-74.	8.3	16
12	Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: A complex cellulosic composite biomaterial. Acta Biomaterialia, 2020, 111, 290-301.	8.3	13
13	Elastic conducting polymer composites in thermoelectric modules. Nature Communications, 2020, 11, 1424.	12.8	134
14	Gold nanoparticles growing in a polymer matrix: What can we learn from spectroscopic imaging ellipsometry?. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	3
15	On the Nanoscale Mapping of the Mechanical and Piezoelectric Properties of Poly (L-Lactic Acid) Electrospun Nanofibers. Applied Sciences (Switzerland), 2020, 10, 652.	2.5	22
16	Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etching. Nano Letters, 2019, 19, 7681-7690.	9.1	24
17	Scanning probe microscopy for energy-related materials. Beilstein Journal of Nanotechnology, 2019, 10, 132-134.	2.8	3
18	Hybrid Interface in Sepiolite Rubber Nanocomposites: Role of Self-Assembled Nanostructure in Controlling Dissipative Phenomena. Nanomaterials, 2019, 9, 486.	4.1	14

Philippe Leclere

#	Article	IF	CITATIONS
19	Mechanistic Insights on Spontaneous Moisture-Driven Healing of Urea-Based Polyurethanes. ACS Applied Materials & Interfaces, 2019, 11, 46176-46182.	8.0	18
20	Nano-mechanical properties of interphases in dynamically vulcanized thermoplastic alloy. Polymer, 2018, 135, 348-354.	3.8	3
21	On the Sputtering of Titanium and Silver onto Liquids, Discussing the Formation of Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 26605-26612.	3.1	17
22	A scanning probe microscopy study of nanostructured TiO ₂ /poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications. Beilstein Journal of Nanotechnology, 2018, 9, 2087-2096.	2.8	3
23	Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries. Scientific Reports, 2018, 8, 9794.	3.3	20
24	Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals. Beilstein Journal of Nanotechnology, 2018, 9, 1695-1704.	2.8	25
25	Modeling and Measuring Viscoelasticity with Dynamic Atomic Force Microscopy. Physical Review Applied, 2018, 10, .	3.8	13
26	Contactless Control of Local Surface Buckling in Photoaligned Gold/Liquid Crystal Polymer Bilayers. Langmuir, 2018, 34, 10543-10549.	3.5	6
27	The structural and chemical basis of temporary adhesion in the sea star <i>Asterina gibbosa</i> . Beilstein Journal of Nanotechnology, 2018, 9, 2071-2086.	2.8	16
28	On the influence of the photo-oxidation of P3HT on the conductivity of photoactive film of P3HT:PCBM bulk heterojunctions. Organic Electronics, 2017, 43, 142-147.	2.6	12
29	Reactive oligo(dimethylsiloxane) mesogens and their nanostructured thin films. Soft Matter, 2017, 13, 4357-4362.	2.7	4
30	Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. Advanced Materials, 2017, 29, 1606407.	21.0	90
31	Estimation of π–π Electronic Couplings from Current Measurements. Nano Letters, 2017, 17, 3215-3224.	9.1	35
32	3D Orientational Control in Selfâ€Assembled Thin Films with Subâ€5 nm Features by Light. Small, 2017, 13, 1701043.	10.0	24
33	Biointerfaces: Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration (Adv. Mater. 27/2017). Advanced Materials, 2017, 29, .	21.0	0
34	On the Bioadhesive Properties of Silicone-Based Coatings by Incorporation of Block Copolymers. Biologically-inspired Systems, 2017, , 303-343.	0.2	0
35	Thin Films: 3D Orientational Control in Selfâ€Assembled Thin Films with Subâ€5 nm Features by Light (Small 33/2017). Small, 2017, 13, .	10.0	0
36	Dispersion Photopolymerization of Acrylated Oligomers Using a Flexible Continuous Reactor. Macromolecular Reaction Engineering, 2016, 10, 502-509.	1.5	3

#	Article	IF	CITATIONS
37	Subâ€5 nm Patterning by Directed Selfâ€Assembly of Oligo(Dimethylsiloxane) Liquid Crystal Thin Films. Advanced Materials, 2016, 28, 10068-10072.	21.0	64
38	Strategies toward Controlling the Topology of Nonlinear Poly(thiophenes). Macromolecules, 2016, 49, 8951-8959.	4.8	7
39	Statistical investigations of an ENIG Nickel film morphology by Atomic Force Microscopy. E3S Web of Conferences, 2016, 12, 04003.	0.5	1
40	The cellular basis of bioadhesion of the freshwater polyp Hydra. BMC Zoology, 2016, 1, .	1.0	20
41	From cylindrical to spherical nanosized micelles by self-assembly of poly(dimethylsiloxane)-b-poly(acrylic acid) diblock copolymers. Polymer Bulletin, 2016, 73, 2129-2146.	3.3	1
42	Probing viscoelastic response of soft material surfaces at the nanoscale. Soft Matter, 2016, 12, 619-624.	2.7	28
43	Nanoscale study of MoSe2/poly(3-hexylthiophene) bulk heterojunctions for hybrid photovoltaic applications. Solar Energy Materials and Solar Cells, 2016, 145, 116-125.	6.2	11
44	Crystallizationâ€induced toughness of rubberâ€modified polylactide: combined effects of biodegradable impact modifier and effective nucleating agent. Polymers for Advanced Technologies, 2015, 26, 814-822.	3.2	22
45	On the effects of a pressure induced amorphous silicon layer on consecutive spreading resistance microscopy scans of doped silicon. Journal of Applied Physics, 2015, 117, 244306.	2.5	11
46	Fiber-Optic SPR Immunosensors Tailored To Target Epithelial Cells through Membrane Receptors. Analytical Chemistry, 2015, 87, 5957-5965.	6.5	58
47	Onâ€Demand Wrinkling Patterns in Thin Metal Films Generated from Selfâ€Assembling Liquid Crystals. Advanced Functional Materials, 2015, 25, 1360-1365.	14.9	29
48	Photopatterning: Onâ€Demand Wrinkling Patterns in Thin Metal Films Generated from Selfâ€Assembling Liquid Crystals (Adv. Funct. Mater. 9/2015). Advanced Functional Materials, 2015, 25, 1472-1472.	14.9	0
49	Influence of the Grafting Density on the Self-Assembly in Poly(phenyleneethynylene)- <i>g</i> -poly(3-hexylthiophene) Graft Copolymers. Macromolecules, 2015, 48, 8789-8796.	4.8	14
50	Direct visualization of microphase separation in block copoly(3-alkylthiophene)s. RSC Advances, 2015, 5, 8721-8726.	3.6	18
51	Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer, 2015, 65, 9-17.	3.8	163
52	Solution processed liquid metal-conducting polymer hybrid thin films as electrochemical pH-threshold indicators. Journal of Materials Chemistry C, 2015, 3, 7604-7611.	5.5	13
53	Toughening of poly(lactide) using polyethylene glycol methyl ether acrylate: Reactive versus physical blending. Polymer Engineering and Science, 2015, 55, 1408-1419.	3.1	35
54	On the mechanical and electronic properties of thiolated gold nanocrystals. Nanoscale, 2015, 7, 1809-1819.	5.6	23

#	Article	IF	CITATIONS
55	Chemical force microscopy of stimuli-responsive adhesive copolymers. Nanoscale, 2014, 6, 565-571.	5.6	17
56	Modification of the Adhesive Properties of Silicone-Based Coatings by Block Copolymers. Langmuir, 2014, 30, 358-368.	3.5	18
57	Instantaneous adhesion of Cuvierian tubules in the sea cucumber <i>Holothuria forskali</i> . Biointerphases, 2014, 9, 029016.	1.6	9
58	Towards a unified description of the charge transport mechanisms in conductive atomic force microscopy studies of semiconducting polymers. Nanoscale, 2014, 6, 10596-10603.	5.6	20
59	One-Pot Synthesis and Characterization of All-Conjugated Poly(3-alkylthiophene)- <i>block</i> -poly(dialkylthieno[3,4- <i>b</i>]pyrazine). Macromolecules, 2014, 47, 6671-6678.	4.8	24
60	On the Photoâ€Induced Chargeâ€Carrier Generation within Monolayers of Selfâ€Assembled Organic Donor–Acceptor Dyads. Advanced Materials, 2014, 26, 6416-6422.	21.0	9
61	Preparation of narrowly dispersed stereocomplex nanocrystals: a step towards all-poly(lactic acid) nanocomposites. Journal of Materials Chemistry A, 2014, 2, 7402-7409.	10.3	21
62	Patterned Silver Nanoparticles embedded in a Nanoporous Smectic Liquid Crystalline Polymer Network. Journal of the American Chemical Society, 2013, 135, 10922-10925.	13.7	38
63	Influence of the regioregularity on the chiral supramolecular organization of poly(3-alkylsulfanylthiophene)s. RSC Advances, 2013, 3, 3342.	3.6	17
64	Convection-assisted assembly of cellulose nanowhiskers embedded in an acrylic copolymer. Nanoscale, 2013, 5, 1082-1090.	5.6	18
65	Sol–gel incorporation of silica nanofillers for tuning the anti-corrosion protection of acrylate-based coatings. Progress in Organic Coatings, 2013, 76, 900-911.	3.9	60
66	New carboxysilaneâ€coated iron oxide nanoparticles for nonspecific cell labelling. Contrast Media and Molecular Imaging, 2013, 8, 466-474.	0.8	23
67	Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers. European Polymer Journal, 2013, 49, 914-922.	5.4	77
68	Poly(3-alkylthiophene) with tuneable regioregularity: synthesis and self-assembling properties. Polymer Chemistry, 2013, 4, 2662.	3.9	48
69	Macrocyclic regioregular poly(3-hexylthiophene): from controlled synthesis to nanotubular assemblies. Polymer Chemistry, 2013, 4, 237-241.	3.9	16
70	High-Relaxivity and Luminescent Silica Nanoparticles As Multimodal Agents for Molecular Imaging. Langmuir, 2013, 29, 3419-3427.	3.5	20
71	Multiphase coatings from complex radiation curable polyurethane dispersions. Progress in Organic Coatings, 2012, 75, 560-568.	3.9	29
72	Nanoscale investigation of the electrical properties in semiconductor polymer–carbon nanotube hybrid materials. Nanoscale, 2012, 4, 2705.	5.6	45

#	Article	IF	CITATIONS
73	Correlation between (nano)-mechanical and chemical changes occurring during photo-oxidation of filled vulcanised styrene butadiene rubber (SBR). Polymer Degradation and Stability, 2012, 97, 2195-2201.	5.8	32
74	On the transfer of cooperative self-assembled π-conjugated fibrils to a gold substrate. Chemical Communications, 2011, 47, 9333.	4.1	3
75	Nanostructured Polymer Blends: From Core/Shell Nanoobjects to Continuous Threeâ€Phase Morphologies. Macromolecular Materials and Engineering, 2011, 296, 122-130.	3.6	0
76	Dilutionâ€Induced Selfâ€Assembly of Porphyrin Aggregates: A Consequence of Coupled Equilibria. Angewandte Chemie - International Edition, 2010, 49, 3939-3942.	13.8	134
77	Regioregular poly(3-hexylthiophene)-poly(ε-caprolactone) block copolymers: Controlled synthesis, microscopic morphology, and charge transport properties. Organic Electronics, 2010, 11, 767-774.	2.6	39
78	Synthesis, characterization and comparative OFET behaviour of indenofluorene–bithiophene and terthiophene alternating copolymers. Synthetic Metals, 2010, 160, 468-474.	3.9	10
79	Thermoelectric properties of conducting polymers: The case of poly(3-hexylthiophene). Physical Review B, 2010, 82, .	3.2	196
80	From Jellyfish Macromolecular Architectures to Nanodoughnut Self-Assembly. Macromolecules, 2010, 43, 575-579.	4.8	22
81	Kinetic switching between two modes of bisurea surfactant self-assembly. Chemical Communications, 2010, 46, 6063.	4.1	16
82	Supramolecular Organization of ssDNAâ€Templated π onjugated Oligomers via Hydrogen Bonding. Advanced Materials, 2009, 21, 1126-1130.	21.0	72
83	Probing the Local Conformation within Ï€â€Conjugated Oneâ€dimensional Supramolecular Stacks using Frequency Modulation Atomic Force Microscopy. Advanced Materials, 2009, 21, 4124-4129.	21.0	15
84	Multicolour Selfâ€Assembled Fluorene Coâ€Oligomers: From Molecules to the Solid State via Whiteâ€Lightâ€Emitting Organogels. Chemistry - A European Journal, 2009, 15, 9737-9746.	3.3	99
85	White-Light Emitting Hydrogen-Bonded Supramolecular Copolymers Based on π-Conjugated Oligomers. Journal of the American Chemical Society, 2009, 131, 833-843.	13.7	333
86	Synthesis, characterization and comparative study of thiophene–benzothiadiazole based donor–acceptor–donor (D–A–D) materials. Journal of Materials Chemistry, 2009, 19, 3228.	6.7	98
87	Insights into Templated Supramolecular Polymerization: Binding of Naphthalene Derivatives to ssDNA Templates of Different Lengths. Journal of the American Chemical Society, 2009, 131, 1222-1231.	13.7	86
88	Doping of poly(3-hexylthiophene) nanofibers: microscopic morphology and electrical properties. EPJ Applied Physics, 2009, 46, 12504.	0.7	2
89	Excimer-laser induced structural transformations of TiO2thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3255-3258.	0.8	3
90	Controlled nanorubbing of polythiophene thin films for field-effect transistors. Organic Electronics, 2008, 9, 821-828.	2.6	25

#	Article	IF	CITATIONS
91	Microscopic morphology of blends between a new "all-acrylate―radial block copolymer and a rosin ester resin for pressure sensitive adhesives. European Polymer Journal, 2008, 44, 3931-3940.	5.4	16
92	Supramolecular Materials from Benzene-1,3,5-tricarboxamide-Based Nanorods. Journal of the American Chemical Society, 2008, 130, 1120-1121.	13.7	112
93	Electron Tomography Shows Molecular Anchoring Within a Layer-by-Layer Film. Journal of the American Chemical Society, 2008, 130, 12608-12609.	13.7	7
94	Oligo(<i>p</i> -phenylenevinylene)â^Peptide Conjugates: Synthesis and Self-Assembly in Solution and at the Solidâ^Liquid Interface. Journal of the American Chemical Society, 2008, 130, 14576-14583.	13.7	100
95	Adhesive properties of a radial acrylic block co-polymer with a rosin ester resin. Journal of Adhesion Science and Technology, 2007, 21, 559-574.	2.6	12
96	The Self-Assembly of Amphiphilic Oligothiophenes: Hydrogen Bonding and Poly(glutamate) Complexation. Bulletin of the Chemical Society of Japan, 2007, 80, 1703-1715.	3.2	13
97	Solid-state assemblies and optical properties of conjugated oligomers combining fluorene and thiophene units. Journal of Materials Chemistry, 2007, 17, 728-735.	6.7	58
98	Fractal dimension, growth mode and residual stress of metal thin films. Journal Physics D: Applied Physics, 2007, 40, 1077-1079.	2.8	24
99	Influence of Supramolecular Organization on Energy Transfer Properties in Chiral Oligo(<i>p</i> -phenylene vinylene) Porphyrin Assemblies. Journal of the American Chemical Society, 2007, 129, 9819-9828.	13.7	98
100	New "All-Acrylate―Block Copolymers: Synthesis and Influence of the Architecture on the Morphology and the Mechanical Properties. Macromolecules, 2007, 40, 1055-1065.	4.8	27
101	Helicity Induction and Amplification in an Oligo(<i>p</i> â€phenylenevinylene) Assembly through Hydrogenâ€Bonded Chiral Acids. Angewandte Chemie - International Edition, 2007, 46, 8206-8211.	13.8	118
102	Star-Shaped Oligo(<i>p</i> -phenylenevinylene) Substituted Hexaarylbenzene:  Purity, Stability, and Chiral Self-assembly ^{â€} . Journal of the American Chemical Society, 2007, 129, 16190-16196.	13.7	96
103	Chiral Amphiphilic Self-Assembled α,αâ€~-Linked Quinque-, Sexi-, and Septithiophenes: Synthesis, Stability and Oddâ^'Even Effects. Journal of the American Chemical Society, 2006, 128, 5923-5929.	13.7	120
104	Functional polymers: scanning force microscopy insights. Physical Chemistry Chemical Physics, 2006, 8, 3927-3938.	2.8	43
105	Moleculeâ^'Molecule versus Moleculeâ^'Substrate Interactions in the Assembly of Oligothiophenes at Surfaces. Journal of Physical Chemistry B, 2006, 110, 7898-7908.	2.6	44
106	Supramolecular assembly of conjugated polymers: From molecular engineering to solid-state properties. Materials Science and Engineering Reports, 2006, 55, 1-56.	31.8	88
107	Structuration of Semiconducting Polymer Thin Films by Nanorubbing. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	0
108	Scanning Probe Microscopy of Complex Polymer Systems: Beyond Imaging their Morphology. , 2006, , 175-207.		3

#	Article	IF	CITATIONS
109	Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors. Journal of Applied Physics, 2006, 100, 033712.	2.5	158
110	Dynamic Atomic Force Microscopy Analysis of Polymer Materials: Beyond Imaging Their Surface Morphology. ACS Symposium Series, 2005, , 86-97.	0.5	2
111	Supramolecular Organization in Fluorene/Indenofluorene- Oligothiophene Alternating Conjugated Copolymers. Advanced Functional Materials, 2005, 15, 1426-1434.	14.9	40
112	Nanorubbing of Polythiophene Surfaces. Journal of the American Chemical Society, 2005, 127, 8018-8019.	13.7	54
113	Field-Effect Transistors Based on Self-Organized Molecular Nanostripes. Nano Letters, 2005, 5, 2422-2425.	9.1	114
114	The Bis-urea Motif as a Tool To Functionalize Self-Assembled Nanoribbons. Journal of the American Chemical Society, 2005, 127, 16768-16769.	13.7	30
115	About Oligothiophene Self-Assembly:  From Aggregation in Solution to Solid-State Nanostructures. Chemistry of Materials, 2004, 16, 4452-4466.	6.7	186
116	Microscopic Morphology of Polyfluorene–Poly(ethylene oxide) Block Copolymers: Influence of the Block Ratio. Advanced Functional Materials, 2004, 14, 708-715.	14.9	77
117	Organic semi-conducting architectures for supramolecular electronics. European Polymer Journal, 2004, 40, 885-892.	5.4	57
118	Atomic force microscopy study of comb-like vs. arborescent graft copolymers in thin films. Polymer, 2004, 45, 1833-1843.	3.8	44
119	Correlation between the Microscopic Morphology and the Solid-State Photoluminescence Properties in Fluorene-Based Polymers and Copolymers. Chemistry of Materials, 2004, 16, 994-1001.	6.7	138
120	Surface-controlled self-assembly of chiral sexithiophenes. Journal of Materials Chemistry, 2004, 14, 1959-1963.	6.7	56
121	Surface-Induced Selective Delamination of Amphiphilic ABA Block Copolymer Thin Films. Macromolecules, 2004, 37, 3431-3437.	4.8	17
122	4-Hexylbithieno[3,2-b:2â€~3â€~-e]pyridine: An Efficient Electron-Accepting Unit in Fluorene and Indenofluorene Copolymers for Light-Emitting Devices. Macromolecules, 2004, 37, 709-715.	4.8	55
123	Oligothiophene-based nanostructures: from solution to solid-state aggregates. Synthetic Metals, 2004, 147, 67-72.	3.9	16
124	Growth of ultrathin Ti films deposited on SnO2 by magnetron sputtering. Thin Solid Films, 2003, 437, 57-62.	1.8	54
125	Supramolecular organization in block copolymers containing a conjugated segment: a joint AFM/molecular modeling study. Progress in Polymer Science, 2003, 28, 55-81.	24.7	151
126	Study of ZrN layers deposited by reactive magnetron sputtering. Surface and Coatings Technology, 2003, 174-175, 240-245.	4.8	61

#	Article	IF	CITATIONS
127	Polymer Coating of Steel by a Combination of Electrografting and Atom-Transfer Radical Polymerization. Macromolecules, 2003, 36, 5926-5933.	4.8	36
128	Controlled Free Radical Polymerization of Styrene Initiated from Alkoxyamine Attached to Polyacrylate Chemisorbed onto Conducting Surfaces. Chemistry of Materials, 2003, 15, 923-927.	6.7	42
129	Conjugated polymer chains self-assembly: a new method to generate (semi)-conducting nanowires?. Materials Science and Technology, 2002, 18, 749-754.	1.6	9
130	Supramolecular Organization of α,αâ€~-Disubstituted Sexithiophenes. Journal of the American Chemical Society, 2002, 124, 1269-1275.	13.7	211
131	Correlation Between Molecular Structure, Microscopic Morphology, and Optical Propertiesof Poly(tetraalkylindenofluorene)s. Advanced Functional Materials, 2002, 12, 729-733.	14.9	75
132	Dynamic force microscopy analysis of block copolymers: beyond imaging the morphology. Applied Surface Science, 2002, 188, 524-533.	6.1	14
133	Growth and morphology of magnetron sputter deposited silver films. Surface and Coatings Technology, 2002, 151-152, 86-90.	4.8	27
134	Organization of conjugated polymer materials via block copolymer self-assembly. Synthetic Metals, 2001, 121, 1295-1296.	3.9	6
135	Dynamic force microscopic study of a triblock copolymer with the AFM non contact resonant mode. Macromolecular Symposia, 2001, 167, 177-188.	0.7	3
136	Surface organization of hyperbranched polymer molecules, as studied by atomic force microscopy. Macromolecular Symposia, 2001, 167, 243-256.	0.7	4
137	Phase-separated microstructures in "all-acrylic―thermoplastic elastomers. Macromolecular Symposia, 2001, 167, 117-137.	0.7	9
138	Title is missing!. European Physical Journal E, 2001, 6, 387-397.	1.6	24
139	Probing viscosity of a polymer melt at the nanometre scale with an oscillating nanotip. European Physical Journal E, 2001, 6, 49-55.	1.6	18
140	Morphology and mechanical properties of poly(methylmethacrylate)-b-poly(alkylacrylate)-b-poly(methylmethacrylate). Polymer, 2001, 42, 3503-3514.	3.8	46
141	Morphology and rheology of poly(methyl methacrylate)-block-poly(isooctyl) Tj ETQq1 1 0.784314 rgBT /Overlock elastomers. Macromolecular Chemistry and Physics, 2000, 201, 1250-1258.	10 Tf 50 2 2.2	187 Td (acry 26
142	Highly Regular Organization of Conjugated Polymer Chains via Block Copolymer Self-Assembly. Advanced Materials, 2000, 12, 1042-1046.	21.0	126
143	Synthesis and bulk properties of poly(methyl methacrylate)- b -poly(isooctyl acrylate)- b -poly(methyl) Tj ETQq1 1	0,784314 3.8	• rgBT /Overle
144	Crystal network formation in organic solar cells. Solar Energy Materials and Solar Cells, 2000, 61, 53-61.	6.2	139

#	Article	IF	CITATIONS
145	Microphase separation at the surface of block copolymers, as studied with atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2000, 19, 381-395.	5.0	29
146	Synthesis, Morphology, and Mechanical Properties of Poly(methyl methacrylate)-b-poly(n-butyl) Tj ETQq0 0 0 rgBT Radical Polymerization. Macromolecules, 2000, 33, 470-479.	/Overlock 4.8	10 Tf 50 70 92
147	Quantitative Measurement of the Mechanical Contribution to Tapping-Mode Atomic Force Microscopy Images of Soft Materials. Langmuir, 2000, 16, 8432-8437.	3.5	74
148	Microstructure of block copolymers containing a conjugated segment, as studied with atomic force microscopy. Synthetic Metals, 1999, 102, 1279-1282.	3.9	12
149	Direct Observation of Microdomain Morphology in "All-Acrylic―Thermoplastic Elastomers Synthesized via Living Radical Polymerization. Langmuir, 1999, 15, 3915-3919.	3.5	41
150	Organized Semiconducting Nanostructures from Conjugated Block Copolymer Self-Assembly. Chemistry of Materials, 1998, 10, 4010-4014.	6.7	54
151	XPS/AFM study of the PET surface modified by oxygen and carbon dioxide plasmas: Al/PET adhesion. Journal of Adhesion Science and Technology, 1998, 12, 999-1023.	2.6	49
152	Microdomain Morphology Analysis of Block Copolymers by Atomic Force Microscopy with Phase Detection Imaging. Langmuir, 1996, 12, 4317-4320.	3.5	123
153	<title>Degenerate four-wave mixing in saturable dye-doped polymers: comparison of different xanthene dyes in poly(vinyl alcohol) films</title> . , 1995, , .		1
154	Photobleaching of xanthene dyes in a poly(vinyl alcohol) matrix. Applied Physics B: Lasers and Optics, 1994, 58, 73-77.	2.2	17
155	Characterization of an acrylamide-based dry photopolymer holographic recording material. Optical Engineering, 1994, 33, 3942.	1.0	96
156	<title>Improvement of recording capabilities of silver halide holographic emulsions by physical and chemical developments</title> ., 1993,,.		1
157	Photopolymerizable material for holographic recording in the 450-550 nm domain: characterization and applications II. Journal of Optics, 1992, 23, 73-79.	0.3	13
158	Measure of the diffraction efficiency of a holographic grating created by two Gaussian beams. Applied Optics, 1992, 31, 4725.	2.1	14
159	<title>New technique for characterizing holographic recording materials</title> . , 1991, 1559, 298.		0
160	Light on Organic and Hybrid Photovoltaic Devices : The Key Role of Scanning Probe Microscopy. , 0, , .		0
161	Light on Organic and Hybrid Photovoltaic Devices : The Key Role of Scanning Probe Microscopy. , 0, , .		0