Bin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5023509/publications.pdf Version: 2024-02-01

	23567	42399
11,181	58	92
citations	h-index	g-index
050	252	00.00
252	252	8263
docs citations	times ranked	citing authors
	citations 252	11,181 58 citations h-index 252 252

RIN CHEN

#	Article	IF	CITATIONS
1	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	12.8	420
2	Energy and material flows of megacities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5985-5990.	7.1	371
3	Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis. Applied Energy, 2015, 138, 99-107.	10.1	293
4	Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 2011, 222, 301-306.	2.5	281
5	Urban energy–water nexus: A network perspective. Applied Energy, 2016, 184, 905-914.	10.1	274
6	A holistic low carbon city indicator framework for sustainable development. Applied Energy, 2017, 185, 1919-1930.	10.1	230
7	Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region. Applied Energy, 2016, 178, 773-783.	10.1	223
8	Energy consumption for water use cycles in different countries: A review. Applied Energy, 2016, 178, 868-885.	10.1	218
9	Network Environ Perspective for Urban Metabolism and Carbon Emissions: A Case Study of Vienna, Austria. Environmental Science & Technology, 2012, 46, 4498-4506.	10.0	212
10	Linkage analysis for the water–energy nexus of city. Applied Energy, 2017, 189, 770-779.	10.1	207
11	Targeted opportunities to address the climate–trade dilemma in China. Nature Climate Change, 2016, 6, 201-206.	18.8	206
12	Applying the Input-Output Method to Account for Water Footprint and Virtual Water Trade in the Haihe River Basin in China. Environmental Science & Technology, 2010, 44, 9150-9156.	10.0	203
13	Driving Force Analysis of the Agricultural Water Footprint in China Based on the LMDI Method. Environmental Science & Technology, 2014, 48, 12723-12731.	10.0	135
14	Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation. Environmental Pollution, 2014, 190, 139-149.	7.5	132
15	Clean air for some: Unintended spillover effects of regional air pollution policies. Science Advances, 2019, 5, eaav4707.	10.3	126
16	Urban energy–water nexus based on modified input–output analysis. Applied Energy, 2017, 196, 208-217.	10.1	125
17	Ecological Network Analysis for a Virtual Water Network. Environmental Science & Technology, 2015, 49, 6722-6730.	10.0	123
18	Rural energy in China: Pattern and policy. Renewable Energy, 2009, 34, 2813-2823.	8.9	119

#	Article	IF	CITATIONS
19	Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives. Ecological Modelling, 2013, 250, 25-33.	2.5	119
20	Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecological Indicators, 2014, 47, 43-49.	6.3	116
21	Ecological Network Analysis for Carbon Metabolism of Eco-industrial Parks: A Case Study of a Typical Eco-industrial Park in Beijing. Environmental Science & Technology, 2015, 49, 7254-7264.	10.0	113
22	Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation. Environmental Science & Technology, 2015, 49, 11594-11603.	10.0	113
23	Prevention and control policy analysis for energy-related regional pollution management in China. Applied Energy, 2016, 166, 292-300.	10.1	106
24	Energy–water nexus of international energy trade of China. Applied Energy, 2017, 194, 725-734.	10.1	106
25	Pathways for sustainable energy transition. Journal of Cleaner Production, 2019, 228, 1564-1571.	9.3	106
26	The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health, The, 2021, 6, e64-e81.	10.0	106
27	Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. Journal of Cleaner Production, 2017, 163, S306-S314.	9.3	104
28	Information-based Network Environ Analysis: A system perspective for ecological risk assessment. Ecological Indicators, 2011, 11, 1664-1672.	6.3	100
29	Life-cycle energy production and emissions mitigation by comprehensive biogas–digestate utilization. Bioresource Technology, 2012, 114, 357-364.	9.6	97
30	Energy–water nexus under energy mix scenarios using input–output and ecological network analyses. Applied Energy, 2019, 233-234, 827-839.	10.1	97
31	Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139, 75-87.	11.1	95
32	Tracking Inter-Regional Carbon Flows: A Hybrid Network Model. Environmental Science & Technology, 2016, 50, 4731-4741.	10.0	94
33	Energy–water nexus of wind power generation systems. Applied Energy, 2016, 169, 1-13.	10.1	92
34	Monitoring trends of urban development and environmental impact of Beijing, 1999–2006. Science of the Total Environment, 2011, 409, 3295-3308.	8.0	91
35	Ecological Network Analysis on Global Virtual Water Trade. Environmental Science & Technology, 2012, 46, 1796-1803.	10.0	90
36	The driving force of water footprint under the rapid urbanization process: a structural decomposition analysis for Zhangye city in China. Journal of Cleaner Production, 2017, 163, S322-S328.	9.3	88

#	Article	IF	CITATIONS
37	Interregional carbon flows of China. Applied Energy, 2018, 227, 342-352.	10.1	87
38	Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nature Communications, 2018, 9, 3581.	12.8	87
39	Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis. Renewable and Sustainable Energy Reviews, 2012, 16, 3948-3959.	16.4	85
40	Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model. Renewable and Sustainable Energy Reviews, 2015, 42, 78-92.	16.4	85
41	Drivers of CO2 emissions from power generation in China based on modified structural decomposition analysis. Journal of Cleaner Production, 2019, 220, 1143-1155.	9.3	84
42	Dynamic monitoring of wetland cover changes using time-series remote sensing imagery. Ecological Informatics, 2014, 24, 17-26.	5.2	83
43	Multiregional input–output and ecological network analyses for regional energy–water nexus within China. Applied Energy, 2018, 227, 353-364.	10.1	83
44	Biotechnological Advances for Restoring Degraded Land for Sustainable Development. Trends in Biotechnology, 2017, 35, 847-859.	9.3	80
45	Embodiment of virtual water of power generation in the electric power system in China. Applied Energy, 2015, 151, 345-354.	10.1	78
46	Clobal warming impact assessment of a crop residue gasification project—A dynamic LCA perspective. Applied Energy, 2014, 122, 269-279.	10.1	74
47	Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China. Energies, 2012, 5, 22-31.	3.1	72
48	Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts. Ecological Modelling, 2014, 271, 90-102.	2.5	72
49	Life-cycle environmental impact analysis of a typical cement production chain. Applied Energy, 2016, 164, 916-923.	10.1	71
50	Urban land-carbon nexus based on ecological network analysis. Applied Energy, 2020, 276, 115465.	10.1	69
51	How Green Transition of Energy System Impacts China's Mercury Emissions. Earth's Future, 2019, 7, 1407-1416.	6.3	68
52	Real-Time Estimation of Population Exposure to PM2.5 Using Mobile- and Station-Based Big Data. International Journal of Environmental Research and Public Health, 2018, 15, 573.	2.6	67
53	Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County. Applied Energy, 2014, 118, 173-182.	10.1	65
54	Quantitative estimation of 21st-century urban greenspace changes in Chinese populous cities. Science of the Total Environment, 2017, 609, 956-965.	8.0	64

#	Article	IF	CITATIONS
55	Constructing a network of the social-economic consumption system of China using extended exergy analysis. Renewable and Sustainable Energy Reviews, 2012, 16, 4796-4808.	16.4	62
56	Assessment of energy security in China based on ecological network analysis: A perspective from the security of crude oil supply. Energy Policy, 2014, 74, 406-413.	8.8	62
57	Ecological network analysis of the virtual water network within China's electric power system during 2007–2012. Applied Energy, 2016, 168, 110-121.	10.1	62
58	Linkage analysis for water-carbon nexus in China. Applied Energy, 2018, 225, 682-695.	10.1	62
59	Physical and virtual carbon metabolism of global cities. Nature Communications, 2020, 11, 182.	12.8	62
60	Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling. Applied Energy, 2017, 194, 774-783.	10.1	58
61	Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China. Ecological Informatics, 2012, 10, 49-55.	5.2	57
62	Land–water–energy nexus in agricultural management for greenhouse gas mitigation. Applied Energy, 2020, 265, 114796.	10.1	57
63	Net energy production and emissions mitigation of domestic wastewater treatment system: A comparison of different biogas–sludge use alternatives. Bioresource Technology, 2013, 144, 296-303.	9.6	56
64	Changing Urban Carbon Metabolism over Time: Historical Trajectory and Future Pathway. Environmental Science & Technology, 2017, 51, 7560-7571.	10.0	55
65	Human health impact and economic effect for PM2.5 exposure in typical cities. Applied Energy, 2019, 249, 316-325.	10.1	55
66	Accounting global grey water footprint from both consumption and production perspectives. Journal of Cleaner Production, 2019, 225, 963-971.	9.3	53
67	Estimating Energy Consumption of Transport Modes in China Using DEA. Sustainability, 2015, 7, 4225-4239.	3.2	51
68	Scenarios for sewage sludge reduction and reuse in clinker production towards regional eco-industrial development: a comparative emergy-based assessment. Journal of Cleaner Production, 2015, 103, 371-383.	9.3	51
69	Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem. Renewable and Sustainable Energy Reviews, 2015, 41, 347-355.	16.4	51
70	Tracking carbon transfers embodied in Chinese municipalities' domestic and foreign trade. Journal of Cleaner Production, 2018, 192, 950-960.	9.3	50
71	Ecological accounting for China based on extended exergy. Renewable and Sustainable Energy Reviews, 2014, 37, 334-347.	16.4	49
72	Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses. Applied Energy, 2020, 268, 114974.	10.1	49

#	Article	IF	CITATIONS
73	Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China. Renewable and Sustainable Energy Reviews, 2013, 27, 559-568.	16.4	47
74	Network environ analysis for socio-economic water system. Ecological Indicators, 2014, 47, 80-88.	6.3	47
75	ENA-based evaluation of energy supply security: Comparison between the Chinese crude oil and natural gas supply systems. Renewable and Sustainable Energy Reviews, 2017, 72, 888-899.	16.4	47
76	Low-Carbon Development Patterns: Observations of Typical Chinese Cities. Energies, 2012, 5, 291-304.	3.1	46
77	Evaluation of a Low-Carbon City: Method and Application. Entropy, 2013, 15, 1171-1185.	2.2	46
78	Ecological network analysis of embodied particulate matter 2.5 – A case study of Beijing. Applied Energy, 2016, 184, 882-888.	10.1	46
79	Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation. Applied Energy, 2014, 115, 151-163.	10.1	45
80	Carbon footprint accounting of a typical wind farm in China. Applied Energy, 2016, 180, 416-423.	10.1	45
81	Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism. Renewable and Sustainable Energy Reviews, 2016, 58, 1532-1542.	16.4	45
82	Emergy-based sustainability evaluation of wind power generation systems. Applied Energy, 2016, 177, 239-246.	10.1	43
83	Contaminant transport in a two-zone wetland: Dispersion and ecological degradation. Journal of Hydrology, 2013, 488, 118-125.	5.4	42
84	Decomposition Analysis of Energy-Related Industrial CO2 Emissions in China. Energies, 2013, 6, 2319-2337.	3.1	42
85	The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947.	10.0	41
86	A three-scale input-output analysis of water use in a regional economy: Hebei province in China. Journal of Cleaner Production, 2017, 156, 962-974.	9.3	40
87	Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system. Energy Policy, 2013, 62, 707-716.	8.8	39
88	Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis. Ecological Modelling, 2013, 252, 280-287.	2.5	39
89	How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens. Environmental Pollution, 2018, 238, 874-883.	7.5	39
90	Urban carbon footprints across scale: Important considerations for choosing system boundaries. Applied Energy, 2020, 259, 114201.	10.1	39

#	Article	IF	CITATIONS
91	Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study. Frontiers of Earth Science, 2013, 7, 169-181.	2.1	38
92	Energy, ecology and environment: a nexus perspective. Energy, Ecology and Environment, 2016, 1, 1-2.	3.9	38
93	PM2.5 footprint of household energy consumption. Applied Energy, 2018, 227, 375-383.	10.1	38
94	Water–land nexus in food trade based on ecological network analysis. Ecological Indicators, 2019, 97, 466-475.	6.3	38
95	Ecological Accounting Based on Extended Exergy: A Sustainability Perspective. Environmental Science & Technology, 2014, 48, 9826-9833.	10.0	37
96	A review of industrial symbiosis research: theory and methodology. Frontiers of Earth Science, 2015, 9, 91-104.	2.1	37
97	Urban ecological footprint prediction based on the Markov chain. Journal of Cleaner Production, 2017, 163, 146-153.	9.3	37
98	Information-based ecological network analysis for carbon emissions. Applied Energy, 2019, 238, 45-53.	10.1	36
99	Global water use associated with energy supply, demand and international trade of China. Applied Energy, 2020, 257, 113992.	10.1	36
100	Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer?. Applied Energy, 2018, 211, 403-412.	10.1	35
101	Tracking the carbon footprint of China's coal-fired power system. Resources, Conservation and Recycling, 2022, 177, 105964.	10.8	35
102	Driving factors of water-energy nexus in China. Applied Energy, 2020, 257, 113984.	10.1	34
103	Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing. Frontiers of Earth Science, 2011, 5, 103-109.	2.1	33
104	Sustainability accounting of a household biogas project based on emergy. Applied Energy, 2017, 194, 819-831.	10.1	32
105	Extended exergy based ecological accounting for the transportation sector in China. Renewable and Sustainable Energy Reviews, 2014, 32, 229-237.	16.4	31
106	Energy Consumption in Urban Water Cycle. Energy Procedia, 2016, 104, 123-128.	1.8	31
107	Driving factors of carbon dioxide emissions in China: an empirical study using 2006-2010 provincial data. Frontiers of Earth Science, 2017, 11, 156-161.	2.1	31
108	Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing. Ecological Modelling, 2013, 252, 106-113.	2.5	30

#	Article	IF	CITATIONS
109	Urban metabolism and nexus. Ecological Informatics, 2015, 26, 1-2.	5.2	30
110	Emergy evaluation for a low-carbon industrial park. Journal of Cleaner Production, 2017, 163, S392-S400.	9.3	30
111	Chlorophyll a Simulation in a Lake Ecosystem Using a Model with Wavelet Analysis and Artificial Neural Network. Environmental Management, 2013, 51, 1044-1054.	2.7	29
112	Dynamic Carbon Emission Linkages Across Boundaries. Earth's Future, 2019, 7, 197-209.	6.3	29
113	Three-scale input-output analysis for energy and water consumption in urban agglomeration. Journal of Cleaner Production, 2020, 268, 122148.	9.3	29
114	Urban nexus: A new paradigm for urban studies. Ecological Modelling, 2015, 318, 5-7.	2.5	28
115	Water–energy Nexus in China's Electric Power System. Energy Procedia, 2017, 105, 3972-3977.	1.8	28
116	Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index. Energies, 2011, 4, 1376-1390.	3.1	27
117	Identifying hotspots of sectors and supply chain paths for electricity conservation in China. Journal of Cleaner Production, 2020, 251, 119653.	9.3	27
118	Spillover risk analysis of virtual water trade based on multi-regional input-output model -A case study. Journal of Environmental Management, 2020, 275, 111242.	7.8	27
119	Linking Local Consumption to Global Impacts. Journal of Industrial Ecology, 2016, 20, 382-386.	5.5	26
120	Driving force analysis of the consumption of water and energy in China based on LMDI method. Energy Procedia, 2019, 158, 4318-4322.	1.8	26
121	Interdependence between energy and metals in China: evidence from a nexus perspective. Journal of Cleaner Production, 2019, 214, 345-355.	9.3	26
122	Evolution of methane emissions in global supply chains during 2000-2012. Resources, Conservation and Recycling, 2019, 150, 104414.	10.8	25
123	Achieving carbon neutrality enables China to attain its industrial water-use target. One Earth, 2022, 5, 188-200.	6.8	25
124	Analysis of Resource and Emission Impacts: An Emergy-Based Multiple Spatial Scale Framework for Urban Ecological and Economic Evaluation. Entropy, 2011, 13, 720-743.	2.2	24
125	Regional water–energy–food nexus in China based on multiregional input–output analysis. Energy Procedia, 2017, 142, 3108-3114.	1.8	24
126	Analysis of global energy consumption inequality by using Lorenz curve. Energy Procedia, 2018, 152, 750-755.	1.8	24

#	Article	IF	CITATIONS
127	Energy footprint pathways of China. Energy, 2019, 180, 330-340.	8.8	24
128	Recent trend of industrial emissions in developing countries. Applied Energy, 2016, 166, 187-190.	10.1	23
129	Carbon footprint estimation of Chinese economic sectors based on a three-tier model. Renewable and Sustainable Energy Reviews, 2014, 29, 499-507.	16.4	22
130	Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei. Applied Energy, 2021, 304, 117924.	10.1	22
131	Information indices from ecological network analysis for urban metabolic system. Procedia Environmental Sciences, 2010, 2, 720-724.	1.4	21
132	Dynamic forecasting of agricultural water footprint based on Markov Chain-a case study of the Heihe River Basin. Ecological Modelling, 2017, 353, 150-157.	2.5	21
133	Trans-boundary total suspended particulate matter (TSPM) in urban ecosystems. Ecological Modelling, 2015, 318, 59-63.	2.5	20
134	Three-Tier carbon accounting model for cities. Applied Energy, 2018, 229, 163-175.	10.1	20
135	Global Urban Carbon Networks: Linking Inventory to Modeling. Environmental Science & Technology, 2020, 54, 5790-5801.	10.0	20
136	Drivers of energy-related PM2.5 emissions in the Jing-Jin-Ji region between 2002 and 2015. Applied Energy, 2021, 288, 116668.	10.1	20
137	A comparative study of Beijing and three global cities: A perspective on urban livability. Frontiers of Earth Science, 2011, 5, 323.	2.1	19
138	Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management. Energy Policy, 2013, 59, 600-613.	8.8	18
139	Urban Ecosystem Health Assessment and Its Application in Management: A Multi-Scale Perspective. Entropy, 2013, 15, 1-9.	2.2	17
140	Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model. PLoS ONE, 2013, 8, e77699.	2.5	17
141	Energy-Water Nexus in Urban Industrial System. Energy Procedia, 2016, 88, 212-217.	1.8	17
142	Extended exergy-based urban ecosystem network analysis: a case study of Beijing, China. Procedia Environmental Sciences, 2010, 2, 243-251.	1.4	16
143	The variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. Ecological Modelling, 2011, 222, 337-350.	2.5	16
144	A Hybrid Life-cycle Assessment of CO2 Emissions of a PV Water Pumping System in China. Energy Procedia, 2014, 61, 2871-2875.	1.8	16

#	Article	IF	CITATIONS
145	Co-benefits of CO2 and PM2.5 Emission Reduction. Energy Procedia, 2016, 104, 92-97.	1.8	16
146	Network perspective of embodied PM2.5 – A case study. Journal of Cleaner Production, 2017, 142, 3322-3331.	9.3	16
147	Application of Extreme Learning Machine for Predicting Chlorophyll-a Concentration Inartificial Upwelling Processes. Mathematical Problems in Engineering, 2019, 2019, 1-11.	1.1	16
148	Embodied energy in service industry in global cities: A study of six Asian cities. Land Use Policy, 2020, 91, 104264.	5.6	16
149	An embodied energy perspective of urban economy: A three-scale analysis for Beijing 2002–2012 with headquarter effect. Science of the Total Environment, 2020, 732, 139097.	8.0	16
150	The cumulative effects of dam project on river ecosystem based on multi-scale ecological network analysis. Procedia Environmental Sciences, 2011, 5, 12-17.	1.4	15
151	Ecological Network Analysis for a Low-Carbon and High-Tech Industrial Park. Scientific World Journal, The, 2012, 2012, 1-9.	2.1	15
152	Urban energy consumption and related carbon emission estimation: a study at the sector scale. Frontiers of Earth Science, 2013, 7, 480-486.	2.1	15
153	Integrated ecological modelling for sustainable urban metabolism and management. Ecological Modelling, 2015, 318, 1-4.	2.5	15
154	Relative Urban Ecosystem Health Assessment: A Method Integrating Comprehensive Evaluation and Detailed Analysis. EcoHealth, 2010, 7, 459-472.	2.0	14
155	Extended exergy-based ecological accounting of China during 2000-2007. Procedia Environmental Sciences, 2011, 5, 87-95.	1.4	14
156	Eco-indicators for urban metabolism. Ecological Indicators, 2014, 47, 5-6.	6.3	14
157	Multi-regional input-output and linkage analysis for water-PM2.5 nexus. Applied Energy, 2020, 268, 115018.	10.1	14
158	Multi-objective optimization of energy-water nexus from spatial resource reallocation perspective in China. Applied Energy, 2022, 314, 118919.	10.1	14
159	Ecological risk assessment of hydropower dam construction based on ecological network analysis. Procedia Environmental Sciences, 2010, 2, 725-728.	1.4	13
160	Ecological Network Analysis of Embodied Energy Exchanges Among the Seven Regions of China. Journal of Industrial Ecology, 2016, 20, 472-483.	5.5	13
161	Energy-water-carbon Nexus at Urban Scale. Energy Procedia, 2016, 104, 183-190.	1.8	13
162	LCA-based Carbon Footprint of a Typical Wind Farm in China. Energy Procedia, 2016, 88, 250-256.	1.8	13

Bin Chen

#	Article	IF	CITATIONS
163	Globalized energy-water nexus through international trade: The dominant role of non-energy commodities for worldwide energy-related water use. Science of the Total Environment, 2020, 736, 139582.	8.0	13
164	Assessment and regulation of urban crude oil supply security: A network perspective. Journal of Cleaner Production, 2017, 165, 93-102.	9.3	12
165	Water-energy nexus based on modified multiregional input-output model within China. Energy Procedia, 2019, 158, 4092-4098.	1.8	12
166	Inequality of air pollution and carbon emission embodied in inter-regional transport. Energy Procedia, 2019, 158, 3833-3839.	1.8	12
167	The evolution of China's provincial shared producer and consumer responsibilities for energy-related mercury emissions. Journal of Cleaner Production, 2020, 245, 118678.	9.3	12
168	Evaluation of the changed properties of aquatic animals after dam construction using ecological network analysis. Procedia Environmental Sciences, 2011, 5, 114-119.	1.4	11
169	Extended exergy analysis of urban socioeconomic system: a case study of Beijing, 1996-2006. International Journal of Exergy, 2011, 9, 168.	0.4	11
170	Assessing inter-city ecological and economic relations: An emergy-based conceptual model. Frontiers of Earth Science, 2011, 5, 97-102.	2.1	11
171	Greenhouse Gas Emission Accounting and Management of Low-Carbon Community. Scientific World Journal, The, 2012, 2012, 1-6.	2.1	11
172	Analysis of urban metabolic processes based on input-output method: model development and a case study for Beijing. Frontiers of Earth Science, 2014, 8, 190-201.	2.1	11
173	Production-based and Consumption-based Carbon Emissions of Beijing: Trend and Features. Energy Procedia, 2016, 104, 171-176.	1.8	11
174	Communal carbon metabolism: methodology and case study. Journal of Cleaner Production, 2017, 163, S315-S321.	9.3	11
175	A three-scale input-output analysis of blue and grey water footprint for Beijing-Tianjin-Hebei Urban Agglomeration. Energy Procedia, 2019, 158, 4049-4054.	1.8	11
176	Examination of wetlands system using ecological network analysis: A case study of Baiyangdian Basin, China. Procedia Environmental Sciences, 2010, 2, 427-439.	1.4	10
177	Evaluating Ecological and Economic Benefits of a Low-Carbon Industrial Park Based on Millennium Ecosystem Assessment Framework. Scientific World Journal, The, 2012, 2012, 1-5.	2.1	10
178	Modelling for multi-scale ecosystems in the context of global climate change. Ecological Modelling, 2013, 252, 1-2.	2.5	10
179	Modeling the purification effects of the constructed Sphagnum wetland on phosphorus and heavy metals in Dajiuhu Wetland Reserve, China. Ecological Modelling, 2013, 252, 23-31.	2.5	10
180	Indicators for an expanded business operations model to evaluate eco-smart corporate communities. Ecological Indicators, 2014, 47, 137-148.	6.3	10

#	Article	IF	CITATIONS
181	Accounting of SO2 Emissions from Combustion in Industrial Boilers. Energy Procedia, 2016, 88, 325-329.	1.8	10
182	Average propagation length analysis for carbon emissions in China. Applied Energy, 2020, 275, 115386.	10.1	10
183	Identifying critical sectors and supply chain paths for virtual water and energy-related water trade in China. Applied Energy, 2021, 299, 117294.	10.1	10
184	Impacts of biogas projects on agro-ecosystem in rural areas — A case study of Gongcheng. Frontiers of Earth Science, 2011, 5, 317.	2.1	9
185	Urban Studies Based on Emergy – A Review in Perspective of Causality. Energy Procedia, 2014, 61, 2546-2549.	1.8	9
186	Carbon Metabolism in Urban Communities. Energy Procedia, 2015, 75, 2969-2973.	1.8	9
187	Ternary emergetic environmental performance auditing of a typical industrial park in Beijing. Journal of Cleaner Production, 2017, 163, 128-135.	9.3	9
188	Dynamic Hybrid Life Cycle Assessment of CO2 Emissions of a Typical Biogas Project. Energy Procedia, 2016, 104, 396-401.	1.8	8
189	Modelling Carbon-energy Metabolism of Cities: A Systems Approach. Energy Procedia, 2016, 88, 31-37.	1.8	8
190	The energy-water nexus in interregional economic trade from both consumption and production perspectives. Energy Procedia, 2018, 152, 281-286.	1.8	8
191	Accounting framework of energy-water nexus technologies based on 3 scope hybrid life cycle analysis. Energy Procedia, 2019, 158, 4104-4108.	1.8	8
192	Study on sustainable water use of the Haihe River Basin using ecological network analysis. Frontiers of Earth Science, 2009, 3, 419-430.	0.5	7
193	Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 935-945.	3.3	7
194	Systematic studies on wetlands in China. Ecological Modelling, 2011, 222, 221-223.	2.5	7
195	Life-Cycle-Based Multicriteria Sustainability Evaluation of Industrial Parks: A Case Study in China. Scientific World Journal, The, 2012, 2012, 1-9.	2.1	7
196	Integration of energy, ecology and environment. Frontiers of Earth Science, 2014, 8, 1-2.	2.1	7
197	Linkages Analysis for Water-carbon Nexus in Urban System. Energy Procedia, 2017, 105, 3876-3880.	1.8	7
198	Energy-water Nexus in Beijing: Causality Analysis and Scenario Analysis. Energy Procedia, 2017, 105, 3966-3971.	1.8	7

#	Article	IF	CITATIONS
199	Optimization of electricity generation pattern in China from perspective of water scarcity. Energy Procedia, 2019, 158, 3872-3877.	1.8	7
200	Emergy-based sustainability analysis of bioenergy production from marginal and degraded lands of India. Ecological Modelling, 2022, 466, 109903.	2.5	7
201	Modified linkage analysis for water-land nexus driven by interregional trade. Journal of Cleaner Production, 2022, 353, 131547.	9.3	7
202	Energy-pollutant nexus for wastewater treatment in China based on multi-regional input-output analysis. Journal of Cleaner Production, 2022, 363, 132490.	9.3	7
203	An emergy-based analysis of urban ecosystem health characteristics for Beijing city. International Journal of Exergy, 2011, 9, 192.	0.4	6
204	Information-based Ecological Network Analysis for Embodied Carbon Network in China. Energy Procedia, 2016, 104, 574-579.	1.8	6
205	Understanding, Implementing, and Tracking Urban Metabolism Is Key to Urban Futures. , 2018, , 68-91.		6
206	Tracking embodied water uses and GHG emissions along Chinese supply chains. Journal of Cleaner Production, 2021, 288, 125590.	9.3	6
207	Effects of ecological restoration on carbon sink and carbon drawdown of degraded salt marshes with carbonâ€rich additives application. Land Degradation and Development, 2022, 33, 2103-2114.	3.9	6
208	Inter-country Energy Trade Analysis Based on Ecological Network Analysis. Energy Procedia, 2016, 104, 580-584.	1.8	5
209	Emergy-based Cost-benefit Analysis for Urban Biogas Project. Energy Procedia, 2016, 88, 119-125.	1.8	5
210	Embodied carbon emission analysis of ecoâ^'industrial park based on inputâ^'output analysis and ecological network analysis. Energy Procedia, 2017, 142, 3102-3107.	1.8	5
211	Assessing urban low-carbon performance from a metabolic perspective. Science China Earth Sciences, 2021, 64, 1721-1734.	5.2	5
212	Embodied Water Consumption of Biogas–digestate Utilization. Energy Procedia, 2014, 61, 615-618.	1.8	4
213	Emergy Analysis and Assessment for a High-end Industrial Park. Energy Procedia, 2015, 75, 2953-2956.	1.8	4
214	Sustainable Urban Metabolism. , 0, , 1-8.		4
215	Scarce Water Footprint of Energy Production in China. Energy Procedia, 2016, 88, 176-181.	1.8	4
216	The electricity-water nexus in Chinese electric trade system. Energy Procedia, 2018, 152, 247-252.	1.8	4

#	Article	IF	CITATIONS
217	Indicators for contaminant transport in a three-layer wetland with wind. Ecological Indicators, 2019, 105, 448-463.	6.3	4
218	Exploring Improvement Paths for Eight Industrial Symbiosis Complexes throughout the World. Journal of Environmental Accounting and Management, 2013, 1, 295-306.	0.5	4
219	Township ecosystem health assessment based on fuzzy synthesis evaluation method: a case study of Tongzhou District, Beijing, China. Frontiers of Earth Science, 2009, 3, 312-319.	0.5	3
220	A Sustainability-Oriented Multiobjective Optimization Model for Siting and Sizing Distributed Generation Plants in Distribution Systems. Mathematical Problems in Engineering, 2013, 2013, 1-11.	1.1	3
221	Extended Exergy Accounting for Karachi. Energy Procedia, 2016, 88, 52-57.	1.8	3
222	Driving Forces of Particulate Matter Emissions in China. Energy Procedia, 2017, 105, 4601-4606.	1.8	3
223	Biogas Systems in China. , 2017, , .		3
224	Interregional spillover effect of PM2.5 emissions on Northeast China through the national supply chain. Applied Energy, 2021, 303, 117670.	10.1	3
225	Urban public health assessment and pattern analysis: comparison of four cities in different countries. Frontiers of Earth Science, 2013, 7, 191-198.	2.1	2
226	Two-scale analysis for environmental dispersion in a two-layer wetland. Physics and Chemistry of the Earth, 2015, 89-90, 91-95.	2.9	2
227	Designing a multi-species spatially explicit nature reserve network construction framework based on extinction probability: A case study of Wuyishan city. Ecological Modelling, 2015, 318, 109-117.	2.5	2
228	The Evolution of Cities: "Brains―or "Parasites―of Sustainable Production and Consumption Processes in China. Energy Procedia, 2016, 88, 218-223.	1.8	2
229	The Societal Costs of Deep Decarbonization in China. Energy Procedia, 2017, 142, 3115-3121.	1.8	2
230	Spatial energy-water nexus through economic trade network. Energy Procedia, 2018, 152, 307-311.	1.8	2
231	Linkages analysis for water-PM2.5 nexus in Beijing. Energy Procedia, 2018, 152, 725-730.	1.8	2
232	Examining the Sensitivity of Global CO ₂ Emissions to Trade Restrictions over Multiple Years. Environmental Science and Technology Letters, 2022, 9, 293-298.	8.7	2
233	Urban Public Health: Is There a Pyramid?. International Journal of Environmental Research and Public Health, 2013, 10, 490-498.	2.6	1
234	Water-energy Control Relationship in Socio-economic System. Energy Procedia, 2016, 88, 285-289.	1.8	1

#	Article	IF	CITATIONS
235	History of Biogas Production in China. , 2017, , 1-15.		1
236	Impacts of different low-carbon development pathways on water consumption in China based on input-output analysis. Energy Procedia, 2017, 142, 3122-3128.	1.8	1
237	Main Methods. , 2017, , 17-36.		0
238	Blue, green and grey water embodied in food supply chain in China. Energy Procedia, 2018, 152, 287-292.	1.8	0
239	Extending the Application of Network Analysis to Ecological Risk Assessment for Aquatic Ecosystems. Developments in Environmental Modelling, 2014, 26, 161-183.	0.3	0
240	Environment Emissions of Household Biogas Project. , 2017, , 49-63.		0
241	Economic Assessment of Household Biogas Project. , 2017, , 75-83.		0
242	Energy Evaluation of Household Biogas Project. , 2017, , 65-73.		0
243	Emergy Analysis of Biogas-Linked Agricultural System. , 2017, , 85-136.		Ο