Yoshinori Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5023420/publications.pdf

Version: 2024-02-01

81 9,939 46
papers citations h-index

87 87 87 5961 all docs docs citations times ranked citing authors

80

g-index

#	Article	IF	CITATIONS
1	Meikin synergizes with shugoshin to protect cohesin Rec8 during meiosis I. Genes and Development, 2021, 35, 692-697.	5.9	9
2	SET/TAF1 forms a distance-dependent feedback loop with Aurora B and Bub1 as a tension sensor at centromeres. Scientific Reports, 2020, 10, 15653.	3.3	4
3	Live-cell microscopy of meiosis in spermatocytes. Methods in Cell Biology, 2018, 145, 269-277.	1.1	2
4	Meikinâ€associated poloâ€like kinase specifies Bub1 distribution in meiosis I. Genes To Cells, 2017, 22, 552-567.	1.2	30
5	Pds5 Regulates Sister-Chromatid Cohesion and Chromosome Bi-orientation through a Conserved Protein Interaction Module. Current Biology, 2017, 27, 1005-1012.	3.9	50
6	Dissecting the telomere–inner nuclear membrane interface formed in meiosis. Nature Structural and Molecular Biology, 2017, 24, 1064-1072.	8.2	34
7	A Simple Method to Induce Meiosis and Sporulation Semisynchronously in the Fission Yeast Schizosaccharomyces pombe. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091785.	0.3	1
8	Synchronous Induction of Meiosis in the Fission Yeast Schizosaccharomyces pombe. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091777.	0.3	5
9	Live Imaging of Chromosome Segregation during Meiosis in the Fission Yeast <i>Schizosaccharomyces pombe</i> Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091769.	0.3	O
10	Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harbor Protocols, 2017, 2017, pdb.top079855.	0.3	19
11	TH2A is phosphorylated at meiotic centromere by Haspin. Chromosoma, 2017, 126, 769-780.	2.2	12
12	Hierarchical Regulation of Centromeric Cohesion Protection by Meikin and Shugoshin during Meiosis I. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 259-266.	1.1	9
13	Distinct TERB1 Domains Regulate Different Protein Interactions in Meiotic Telomere Movement. Cell Reports, 2017, 21, 1715-1726.	6.4	33
14	The cohesin REC 8 prevents illegitimate interâ€sister synaptonemal complex assembly. EMBO Reports, 2016, 17, 783-784.	4.5	9
15	Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) inÂmice. Nature Cell Biology, 2016, 18, 1208-1220.	10.3	145
16	Essential role of the Cdk2 activator RingoA in meiotic telomere tethering to the nuclear envelope. Nature Communications, 2016, 7, 11084.	12.8	57
17	The spindle assembly checkpoint promotes chromosome bi-orientation: A novel Mad1 role in chromosome alignment. Cell Cycle, 2016, 15, 493-497.	2.6	10
18	Phosphorylation of Cohesin Rec11/SA3 by Casein Kinase 1 Promotes Homologous Recombination by Assembling the Meiotic Chromosome Axis. Developmental Cell, 2015, 32, 220-230.	7.0	44

#	Article	IF	CITATIONS
19	MEI4: a central player in the regulation of meiotic DNA double strand break formation in the mouse. Journal of Cell Science, 2015, 128, 1800-11.	2.0	65
20	MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap. Cell, 2015, 163, 1252-1266.	28.9	119
21	Mad1 promotes chromosome congression by anchoring a kinesin motor to the kinetochore. Nature Cell Biology, 2015, 17, 1124-1133.	10.3	61
22	Meikin is a conserved regulator of meiosis-l-specific kinetochore function. Nature, 2015, 517, 466-471.	27.8	138
23	The Dissection of Meiotic Chromosome Movement in Mice Using an In Vivo Electroporation Technique. PLoS Genetics, 2014, 10, e1004821.	3.5	69
24	CPF-Associated Phosphatase Activity Opposes Condensin-Mediated Chromosome Condensation. PLoS Genetics, 2014, 10, e1004415.	3.5	49
25	Targeting condensin, a vital spot of <i>MYCN </i> -amplified neuroblastoma. Cell Cycle, 2014, 13, 1224-1224.	2.6	1
26	The meiosis-specific modification of mammalian telomeres. Cell Cycle, 2014, 13, 2024-2028.	2.6	47
27	Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes and Development, 2014, 28, 594-607.	5.9	128
28	The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nature Cell Biology, 2014, 16, 145-156.	10.3	152
29	Kinetochore composition and its function: lessons from yeasts. FEMS Microbiology Reviews, 2014, 38, 185-200.	8.6	40
30	SGOL1 variant B induces abnormal mitosis and resistance to taxane in non-small cell lung cancers. Scientific Reports, 2013, 3, 3012.	3.3	26
31	A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. Journal of Cell Biology, 2012, 198, 165-172.	5.2	200
32	MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nature Cell Biology, 2012, 14, 746-752.	10.3	301
33	Geometry and force behind kinetochore orientation: lessons from meiosis. Nature Reviews Molecular Cell Biology, 2012, 13, 370-382.	37.0	147
34	Repositioning of Aurora B Promoted by Chiasmata Ensures Sister Chromatid Mono-Orientation in Meiosis I. Developmental Cell, 2011, 21, 534-545.	7.0	60
35	A new meiosisâ€specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Reports, 2011, 12, 267-275.	4.5	195
36	Condensin association with histone H2A shapes mitotic chromosomes. Nature, 2011, 474, 477-483.	27.8	167

#	Article	IF	CITATIONS
37	Acetylation regulates monopolar attachment at multiple levels during meiosis I in fission yeast. EMBO Reports, 2011, 12, 1189-1195.	4.5	22
38	Age-Related Meiotic Segregation Errors in Mammalian Oocytes Are Preceded by Depletion of Cohesin and Sgo2. Current Biology, 2010, 20, 1511-1521.	3.9	303
39	Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature, 2010, 467, 719-723.	27.8	208
40	Shugoshin–PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase. Nature Cell Biology, 2010, 12, 500-506.	10.3	153
41	Two Histone Marks Establish the Inner Centromere and Chromosome Bi-Orientation. Science, 2010, 330, 239-243.	12.6	425
42	Phosphorylation of H2A by Bub1 Prevents Chromosomal Instability Through Localizing Shugoshin. Science, 2010, 327, 172-177.	12.6	430
43	Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes and Development, 2010, 24, 2169-2179.	5.9	118
44	Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions. Chromosome Research, 2009, 17, 239-249.	2.2	57
45	Kinetochore geometry defined by cohesion within the centromere. Nature, 2009, 458, 852-858.	27.8	161
46	CENP-C Functions as a Scaffold for Effectors with Essential Kinetochore Functions in Mitosis and Meiosis. Developmental Cell, 2009, 17, 334-343.	7.0	104
47	Heterochromatin links to centromeric protection by recruiting shugoshin. Nature, 2008, 455, 251-255.	27.8	170
48	Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nature Cell Biology, 2008, 10, 42-52.	10.3	230
49	Histone deacetylase 3 is required for centromeric H3K4 deacetylation and sister chromatid cohesion. Genes and Development, 2008, 22, 2639-2644.	5.9	61
50	Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes and Development, 2007, 21, 420-435.	5.9	177
51	Chromosome cohesion in mitosis and meiosis. Journal of Cell Science, 2007, 120, 367-369.	2.0	38
52	Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. EMBO Journal, 2007, 26, 4475-4486.	7.8	90
53	Sister Chromatid Cohesion and Centromere Organization in Meiosis., 2007,, 57-79.		2
54	A One-Sided View of Kinetochore Attachment in Meiosis. Cell, 2006, 126, 1030-1032.	28.9	11

#	Article	IF	Citations
55	Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature, 2006, 441, 46-52.	27.8	545
56	Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature, 2006, 442, 45-50.	27.8	289
57	Shugoshin: guardian spirit at the centromere. Current Opinion in Cell Biology, 2005, 17, 590-595.	5.4	120
58	Human Bub1 Defines the Persistent Cohesion Site along the Mitotic Chromosome by Affecting Shugoshin Localization. Current Biology, 2005, 15, 353-359.	3.9	233
59	Sister chromatid cohesion along arms and at centromeres. Trends in Genetics, 2005, 21, 405-412.	6.7	66
60	Shugoshin protects cohesin complexes at centromeres. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 515-521.	4.0	73
61	The Kinetochore Protein Moa1 Enables Cohesion-Mediated Monopolar Attachment at Meiosis I. Cell, 2005, 123, 803-817.	28.9	152
62	Modifying sister chromatid cohesion for meiosis. Journal of Cell Science, 2004, 117, 4017-4023.	2.0	72
63	The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature, 2004, 427, 510-517.	27.8	523
64	Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature, 2004, 430, 573-578.	27.8	544
65	Kinetochore Orientation in Mitosis and Meiosis. Cell, 2004, 119, 317-327.	28.9	108
66	Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO Journal, 2003, 22, 5643-5653.	7.8	116
67	Distinct Cohesin Complexes Organize Meiotic Chromosome Domains. Science, 2003, 300, 1152-1155.	12.6	142
68	Cohesins Determine the Attachment Manner of Kinetochores to Spindle Microtubules at Meiosis I in Fission Yeast. Molecular and Cellular Biology, 2003, 23, 3965-3973.	2.3	115
69	Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biology, 2002, 4, 89-93.	10.3	428
70	The fission yeast meiotic regulator Mei2p undergoes nucleocytoplasmic shuttling. FEBS Letters, 2001, 499, 251-255.	2.8	28
71	Functional analysis of the C-terminal cytoplasmic region of the M-factor receptor in fission yeast. Genes To Cells, 2001, 6, 201-214.	1.2	36
72	Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature, 2001, 409, 359-363.	27.8	138

#	ARTICLE	IF	CITATION
73	Novel WD-Repeat Protein Mip1p Facilitates Function of the Meiotic Regulator Mei2p in Fission Yeast. Molecular and Cellular Biology, 2000, 20, 1234-1242.	2.3	47
74	<i>Schizosaccharomyces pombe</i> Ste7p Is Required for Both Promotion and Withholding of the Entry to Meiosis. Genetics, 2000, 155, 539-549.	2.9	26
75	The Molecular Mechanism of Chromosome Segregation Based on the Function of Sister Chromatid Cohesion Factor, Cohesins Seibutsu Butsuri, 2000, 40, 321-325.	0.1	O
76	Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature, 1999, 400, 461-464.	27.8	517
77	Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature, 1997, 386, 187-190.	27.8	182
78	Microtubule-associated coiled-coil protein Ssm4 is involved in the meiotic development in fission yeast. Genes To Cells, 1997, 2, 155-166.	1.2	28
79	Schizosaccharomyces pombe gad7 + encodes a phosphoprotein with a bZIP domain, which is required for proper G1 arrest and gene expression under nitrogen starvation. Genes To Cells, 1996, 1, 391-408.	1.2	135
80	Evidence of meiosis-specific regulation of gene expression in lily microsporocytes. Plant Science, 1993, 89, 31-41.	3.6	5
81	The sequence necessary for the infectivity of hop stunt viroid cDNA clones. Molecular Genetics and Genomics, 1985, 200, 199-206.	2.4	27