
Janet K Jansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5022923/publications.pdf Version: 2024-02-01

LANET K LANSSON

#	Article	IF	CITATIONS
1	Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486, 207-214.	13.7	9,614
2	Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489, 220-230.	13.7	4,114
3	A framework for human microbiome research. Nature, 2012, 486, 215-221.	13.7	2,249
4	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
5	Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569, 655-662.	13.7	1,638
6	Current understanding of the human microbiome. Nature Medicine, 2018, 24, 392-400.	15.2	1,593
7	Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. MSystems, 2016, 1, .	1.7	1,364
8	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	13.6	1,138
9	Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 2010, 330, 204-208.	6.0	1,109
10	Short-Term Antibiotic Treatment Has Differing Long-Term Impacts on the Human Throat and Gut Microbiome. PLoS ONE, 2010, 5, e9836.	1.1	936
11	A Pyrosequencing Study in Twins Shows That Gastrointestinal Microbial Profiles Vary With Inflammatory Bowel Disease Phenotypes. Gastroenterology, 2010, 139, 1844-1854.e1.	0.6	916
12	Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME Journal, 2007, 1, 56-66.	4.4	885
13	Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology (United) Tj ETQq1 1	0.784314 0.7	rg <mark>BT</mark> /Overlo
14	Dynamics of the human gut microbiome in inflammatory bowel disease. Nature Microbiology, 2017, 2, 17004.	5.9	830
15	Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18, 35-46.	13.6	725
16	The Earth Microbiome project: successes and aspirations. BMC Biology, 2014, 12, 69.	1.7	723
17	Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 2019, 177, 1600-1618.e17.	13.5	701
18	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	9.4	608

#	Article	IF	CITATIONS
19	Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 2011, 480, 368-371.	13.7	601
20	Changes in the Composition of the Human Fecal Microbiome After Bacteriotherapy for Recurrent Clostridium difficile-associated Diarrhea. Journal of Clinical Gastroenterology, 2010, 44, 354-360.	1.1	595
21	Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 2016, 535, 94-103.	13.7	595
22	DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Applied and Environmental Microbiology, 1988, 54, 703-711.	1.4	577
23	Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 2006, 8, 1-10.	1.8	567
24	Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME Journal, 2012, 6, 1715-1727.	4.4	547
25	Shotgun metaproteomics of the human distal gut microbiota. ISME Journal, 2009, 3, 179-189.	4.4	484
26	Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 2015, 521, 208-212.	13.7	467
27	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	9.4	457
28	Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease. PLoS ONE, 2009, 4, e6386.	1.1	429
29	Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME Journal, 2008, 2, 716-727.	4.4	407
30	Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflammatory Bowel Diseases, 2009, 15, 653-660.	0.9	407
31	Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease. PLoS ONE, 2012, 7, e49138.	1.1	374
32	Meta-analyses of studies of the human microbiota. Genome Research, 2013, 23, 1704-1714.	2.4	352
33	The microbial ecology of permafrost. Nature Reviews Microbiology, 2014, 12, 414-425.	13.6	345
34	The soil microbiome — from metagenomics to metaphenomics. Current Opinion in Microbiology, 2018, 43, 162-168.	2.3	330
35	Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME Journal, 2014, 8, 1464-1475.	4.4	325
36	Tackling soil diversity with the assembly of large, complex metagenomes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4904-4909.	3.3	305

#	Article	IF	CITATIONS
37	Deepâ€sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology, 2012, 14, 2405-2416.	1.8	275
38	Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. Journal of Medical Microbiology, 2009, 58, 509-516.	0.7	260
39	Unlocking the potential of metagenomics through replicated experimental design. Nature Biotechnology, 2012, 30, 513-520.	9.4	250
40	Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME Journal, 2012, 6, 451-460.	4.4	240
41	Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 2020, 8, 82.	4.9	239
42	Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Standards in Genomic Sciences, 2010, 3, 243-248.	1.5	228
43	Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab on A Chip, 2009, 9, 1193.	3.1	222
44	Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. MBio, 2017, 8, .	1.8	219
45	TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 2009, 7, 252-252.	13.6	199
46	Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiology Letters, 2006, 254, 34-40.	0.7	197
47	A unified initiative to harness Earth's microbiomes. Science, 2015, 350, 507-508.	6.0	195
48	Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics. Journal of Proteome Research, 2010, 9, 6615-6622.	1.8	193
49	Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Applied Soil Ecology, 2010, 45, 193-200.	2.1	190
50	Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains. PLoS Biology, 2014, 12, e1001920.	2.6	190
51	Simultaneous Monitoring of Cell Number and Metabolic Activity of Specific Bacterial Populations with a Dual <i>gfp-luxAB</i> Marker System. Applied and Environmental Microbiology, 1999, 65, 813-821.	1.4	177
52	Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiology Ecology, 2006, 22, 17-28.	1.3	177
53	The Earth Microbiome Project: Meeting report of the "1st EMP meeting on sample selection and acquisition―at Argonne National Laboratory October 6th 2010 Standards in Genomic Sciences, 2010, 3, 249-253.	1.5	176
54	Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Frontiers in Microbiology, 2014, 5, 130.	1.5	172

Janet K Jansson

#	Article	IF	CITATIONS
55	Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. MSystems, 2016, 1, .	1.7	167
56	In Vivo Study of Trichoderma -Pathogen-Plant Interactions, Using Constitutive and Inducible Green Fluorescent Protein Reporter Systems. Applied and Environmental Microbiology, 2004, 70, 3073-3081.	1.4	157
57	Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis. , 2016, 57, 3747.		156
58	Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME Journal, 2012, 6, 709-712.	4.4	153
59	Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 2083-2092.	0.8	150
60	Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME Journal, 2014, 8, 1904-1919.	4.4	150
61	Soil Microbiomes Under Climate Change and Implications for Carbon Cycling. Annual Review of Environment and Resources, 2020, 45, 29-59.	5.6	145
62	Advances in preservation methods: keeping biosensor microorganisms alive and active. Current Opinion in Biotechnology, 2006, 17, 43-49.	3.3	138
63	Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. Journal of Antimicrobial Chemotherapy, 2006, 58, 1160-1167.	1.3	138
64	Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nature Microbiology, 2017, 2, 16221.	5.9	138
65	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
66	Climate change microbiology — problems and perspectives. Nature Reviews Microbiology, 2019, 17, 391-396.	13.6	130
67	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	1.5	120
68	Use of Bromodeoxyuridine Immunocapture To Identify Active Bacteria Associated with Arbuscular Mycorrhizal Hyphae. Applied and Environmental Microbiology, 2003, 69, 6208-6215.	1.4	119
69	Novel 4-Chlorophenol Degradation Gene Cluster and Degradation Route via Hydroxyquinol in Arthrobacter chlorophenolicus A6. Applied and Environmental Microbiology, 2005, 71, 6538-6544.	1.4	113
70	Colonization Pattern of the Biocontrol Strain <i>Pseudomonas chlororaphis</i> MA 342 on Barley Seeds Visualized by Using Green Fluorescent Protein. Applied and Environmental Microbiology, 1999, 65, 3674-3680.	1.4	113
71	Molecular Fingerprinting of the Fecal Microbiota of Children Raised According to Different Lifestyles. Applied and Environmental Microbiology, 2007, 73, 2284-2289.	1.4	112
72	A multi-omic future for microbiome studies. Nature Microbiology, 2016, 1, 16049.	5.9	112

#	Article	IF	CITATIONS
73	Effect of Starvation and the Viable-but-Nonculturable State on Green Fluorescent Protein (GFP) Fluorescence in GFP-Tagged Pseudomonas fluorescens A506. Applied and Environmental Microbiology, 2000, 66, 3160-3165.	1.4	108
74	Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Frontiers in Microbiology, 2014, 5, 332.	1.5	106
75	The Potential of Metagenomic Approaches for Understanding Soil Microbial Processes. Soil Science Society of America Journal, 2014, 78, 3-10.	1.2	105
76	Landscape topography structures the soil microbiome in arctic polygonal tundra. Nature Communications, 2018, 9, 777.	5.8	105
77	Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomusâ€∫mosseae inoculation or plant species. Environmental Microbiology, 2005, 7, 1952-1966.	1.8	99
78	The metagenomics of disease-suppressive soils – experiences from the METACONTROL project. Trends in Biotechnology, 2008, 26, 591-601.	4.9	99
79	Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiology Ecology, 2010, 71, 197-207.	1.3	96
80	Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Frontiers in Microbiology, 2015, 6, 399.	1.5	94
81	Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Frontiers in Microbiology, 2015, 6, 447.	1.5	92
82	FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus. Nucleic Acids Research, 2014, 42, e145-e145.	6.5	90
83	Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes. MSystems, 2016, 1, .	1.7	89
84	Diets high in resistant starch increase plasma levels of trimethylamine- <i>N</i> -oxide, a gut microbiome metabolite associated with CVD risk. British Journal of Nutrition, 2016, 116, 2020-2029.	1.2	86
85	Monitoring of Antibiotic-Induced Alterations in the Human Intestinal Microflora and Detection of Probiotic Strains by Use of Terminal Restriction Fragment Length Polymorphism. Applied and Environmental Microbiology, 2005, 71, 501-506.	1.4	85
86	Permafrost Meta-Omics and Climate Change. Annual Review of Earth and Planetary Sciences, 2016, 44, 439-462.	4.6	82
87	Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. Journal of Applied Microbiology, 2007, 103, 487-498.	1.4	78
88	Marker and reporter genes: illuminating tools for environmental microbiologists. Current Opinion in Microbiology, 2003, 6, 310-316.	2.3	77
89	The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments. Frontiers in Microbiology, 2014, 5, 108.	1.5	76
90	Active bacterial community structure along vertical redox gradients in Baltic Sea sediment. Environmental Microbiology, 2008, 10, 2051-2063.	1.8	74

#	Article	IF	CITATIONS
91	Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Scientific Reports, 2016, 6, 34434.	1.6	74
92	Omics for understanding microbial functional dynamics. Environmental Microbiology, 2012, 14, 1-3.	1.8	71
93	Ion mobility spectrometry and the omics: Distinguishing isomers, molecular classes and contaminant ions in complex samples. TrAC - Trends in Analytical Chemistry, 2019, 116, 292-299.	5.8	71
94	Earth Microbiome Project and Global Systems Biology. MSystems, 2018, 3, .	1.7	65
95	Tracking genetically engineered microorganisms in nature. Current Opinion in Biotechnology, 1995, 6, 275-283.	3.3	64
96	Selection, Succession, and Stabilization of Soil Microbial Consortia. MSystems, 2019, 4, .	1.7	64
97	Metagenomic Insights into the Degradation of Resistant Starch by Human Gut Microbiota. Applied and Environmental Microbiology, 2018, 84, .	1.4	63
98	Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil. Environmental Microbiology, 2001, 3, 32-42.	1.8	62
99	Adaptation of the psychrotrophArthrobacter chlorophenolicusA6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiology Letters, 2007, 266, 138-143.	0.7	62
100	The Specific Carbohydrate Diet and Diet Modification as Induction Therapy for Pediatric Crohn's Disease: A Randomized Diet Controlled Trial. Nutrients, 2020, 12, 3749.	1.7	62
101	Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiology Ecology, 2018, 94, .	1.3	62
102	Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms, 2022, 10, 540.	1.6	62
103	Community Structure of Actively Growing Bacterial Populations in Plant Pathogen Suppressive Soil. Microbial Ecology, 2007, 53, 399-413.	1.4	60
104	Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiology Letters, 2008, 287, 174-180.	0.7	59
105	The past, present and future of microbiome analyses. Nature Protocols, 2016, 11, 2049-2053.	5.5	59
106	Strategies for Metagenomic-Guided Whole-Community Proteomics of Complex Microbial Environments. PLoS ONE, 2011, 6, e27173.	1.1	58
107	Metaphenomic Responses of a Native Prairie Soil Microbiome to Moisture Perturbations. MSystems, 2019, 4, .	1.7	56
108	Genetic and metabolic links between the murine microbiome and memory. Microbiome, 2020, 8, 53.	4.9	56

#	Article	IF	CITATIONS
109	Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation, 2008, 19, 495-505.	1.5	55
110	Antifungal and Root Surface Colonization Properties of GFP-Tagged Paenibacillus brasilensis PB177. World Journal of Microbiology and Biotechnology, 2005, 21, 1591-1597.	1.7	54
111	Quantification of the presence and activity of specific microorganisms in nature. Molecular Biotechnology, 1997, 7, 103-120.	1.3	52
112	Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome, 2021, 9, 208.	4.9	52
113	Quantification of Genetically Tagged Cyanobacteria in Baltic Sea Sediment by Competitive PCR. BioTechniques, 1997, 22, 512-518.	0.8	51
114	The founding charter of the Genomic Observatories Network. GigaScience, 2014, 3, 2.	3.3	51
115	Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes. Microbiome, 2019, 7, 18.	4.9	51
116	Microbial community structure in polluted Baltic Sea sediments. Environmental Microbiology, 2006, 8, 223-232.	1.8	48
117	A Probe-Enabled Approach for the Selective Isolation and Characterization of Functionally Active Subpopulations in the Gut Microbiome. Journal of the American Chemical Society, 2019, 141, 42-47.	6.6	48
118	Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice. Scientific Reports, 2015, 5, 16247.	1.6	47
119	Changes in Active Bacterial Communities before and after Dredging of Highly Polluted Baltic Sea Sediments. Applied and Environmental Microbiology, 2006, 72, 6800-6807.	1.4	46
120	Toward unrestricted use of public genomic data. Science, 2019, 363, 350-352.	6.0	45
121	Changes in microbial communities along redox gradients in polygonized <scp>A</scp> rctic wet tundra soils. Environmental Microbiology Reports, 2015, 7, 649-657.	1.0	42
122	A unified conceptual framework for prediction and control of microbiomes. Current Opinion in Microbiology, 2018, 44, 20-27.	2.3	42
123	Microbial Community Structure and Functional Potential Along a Hypersaline Gradient. Frontiers in Microbiology, 2018, 9, 1492.	1.5	41
124	The life beneath our feet. Nature, 2013, 494, 40-41.	13.7	40
125	Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2. Standards in Genomic Sciences, 2014, 9, 19.	1.5	40
126	Biomarkers for monitoring efficacy of bioremediation by microbial inoculants. Environmental Pollution, 2000, 107, 217-223.	3.7	39

#	Article	IF	CITATIONS
127	Metabolic and spatio-taxonomic response of uncultivated seafloor bacteria following the Deepwater Horizon oil spill. ISME Journal, 2017, 11, 2569-2583.	4.4	39
128	Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environmental Microbiology, 2018, 20, 4328-4342.	1.8	37
129	Addressing the challenge of soil metaproteome complexity by improving metaproteome depth of coverage through two-dimensional liquid chromatography. Soil Biology and Biochemistry, 2018, 125, 290-299.	4.2	37
130	Monitoring of GFP-Tagged Bacterial Cells. , 1998, 102, 285-298.		36
131	Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments. Environmental Microbiology, 2016, 18, 4471-4484.	1.8	36
132	Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments. Microbial Ecology, 2016, 71, 100-112.	1.4	36
133	Microbial Community Structure and Functional Potential in Cultivated and Native Tallgrass Prairie Soils of the Midwestern United States. Frontiers in Microbiology, 2018, 9, 1775.	1.5	36
134	Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiology Ecology, 2002, 42, 387-397.	1.3	35
135	Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments. FEMS Microbiology Ecology, 2008, 65, 513-525.	1.3	35
136	Advantages of the metagenomic approach for soil exploration: reply from Vogel et al Nature Reviews Microbiology, 2009, 7, 756-757.	13.6	35
137	Spatial distribution of prokaryotic communities in hypersaline soils. Scientific Reports, 2019, 9, 1769.	1.6	33
138	Moisture modulates soil reservoirs of active DNA and RNA viruses. Communications Biology, 2021, 4, 992.	2.0	33
139	â€~Omics' of the mammalian gut – new insights into function. Current Opinion in Biotechnology, 2012, 23, 491-500.	3.3	31
140	Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California. Standards in Genomic Sciences, 2014, 9, 1259-1274.	1.5	31
141	Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils. Soil Biology and Biochemistry, 2018, 120, 283-291.	4.2	31
142	Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes. Microbial Ecology, 2018, 75, 123-139.	1.4	30
143	Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions. Applied and Environmental Microbiology, 2017, 83	1.4	29
144	Deconstructing the Soil Microbiome into Reduced-Complexity Functional Modules. MBio, 2020, 11, .	1.8	27

#	Article	IF	CITATIONS
145	Identification and sequence of a nifJ â€like gene in Rhodospirillum rubrum : partial characterization of a mutant unaffected in nitrogen fixation. Molecular Microbiology, 1996, 20, 559-568.	1.2	26
146	Monitoring physiological status of GFP-tagged Pseudomonas fluorescens SBW25 under different nutrient conditions and in soil by flow cytometry. FEMS Microbiology Ecology, 2004, 51, 123-132.	1.3	26
147	Trade-offs between microbiome diversity and productivity in a stratified microbial mat. ISME Journal, 2017, 11, 405-414.	4.4	26
148	Light-Stress Influences the Composition of the Murine Gut Microbiome, Memory Function, and Plasma Metabolome. Frontiers in Molecular Biosciences, 2019, 6, 108.	1.6	26
149	Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013. Microbiome, 2014, 2,	4.9	25
150	Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization. SpringerPlus, 2015, 4, 405.	1.2	25
151	Degradation of 4-Chlorophenol at Low Temperature and during Extreme Temperature Fluctuations by Arthrobacter chlorophenolicus A6. Microbial Ecology, 2004, 48, 246-253.	1.4	24
152	Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis. Gut, 2019, 68, 1942-1952.	6.1	24
153	DNA Viral Diversity, Abundance, and Functional Potential Vary across Grassland Soils with a Range of Historical Moisture Regimes. MBio, 2021, 12, e0259521.	1.8	24
154	Permafrost as a potential pathogen reservoir. One Earth, 2022, 5, 351-360.	3.6	22
155	Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field. FEMS Microbiology Ecology, 2008, 63, 156-168.	1.3	21
156	Microbial ecology of chlorinated solvent biodegradation. Environmental Microbiology, 2015, 17, 4835-4850.	1.8	21
157	Impact of Temperature on the Physiological Status of a Potential Bioremediation Inoculant, Arthrobacter chlorophenolicus A6. Applied and Environmental Microbiology, 2004, 70, 2952-2958.	1.4	20
158	Indirect Interspecies Regulation: Transcriptional and Physiological Responses of a Cyanobacterium to Heterotrophic Partnership. MSystems, 2017, 2, .	1.7	20
159	The MPLEx Protocol for Multi-omic Analyses of Soil Samples. Journal of Visualized Experiments, 2018, ,	0.2	19
160	Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry. Metallomics, 2019, 11, 166-175.	1.0	19
161	The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011. Standards in Genomic Sciences, 2011, 5, 243-247.	1.5	18
162	Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics, 2013, 13, 2776-2785.	1.3	18

#	Article	IF	CITATIONS
163	Development and Analysis of a Stable, Reduced Complexity Model Soil Microbiome. Frontiers in Microbiology, 2020, 11, 1987.	1.5	18
164	Rapid lab-on-a-chip profiling of human gut bacteria. Journal of Microbiological Methods, 2008, 72, 82-90.	0.7	16
165	Fecal microbiome of growing pigs fed a cereal based diet including chicory (Cichorium intybus L.) or ribwort (Plantago lanceolata L.) forage. Journal of Animal Science and Biotechnology, 2015, 6, 53.	2.1	15
166	Alterations in the relative abundance of <i>Faecalibacterium prausnitzii</i> correlate with changes in fecal calprotectin in patients with ileal Crohn's disease: a longitudinal study. Scandinavian Journal of Gastroenterology, 2019, 54, 577-585.	0.6	15
167	Effect of heat stress on cell activity and cell morphology of the tropical rhizobium, Sinorhizobium arboris. FEMS Microbiology Ecology, 2001, 34, 267-278.	1.3	14
168	Metagenomes from two microbial consortia associated with Santa Barbara seep oil. Marine Genomics, 2014, 18, 97-99.	0.4	14
169	Draft Genome Sequence of <i>Streptomyces</i> sp. Strain Wb2n-11, a Desert Isolate with Broad-Spectrum Antagonism against Soilborne Phytopathogens. Genome Announcements, 2015, 3, .	0.8	14
170	Impact of Phenolic Substrate and Growth Temperature on the Arthrobacter chlorophenolicus Proteome. Journal of Proteome Research, 2009, 8, 1953-1964.	1.8	13
171	Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach. Marine Drugs, 2017, 15, 114.	2.2	13
172	Temporal dynamics of CO2 and CH4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils. Ecological Engineering, 2018, 114, 104-114.	1.6	13
173	Predominance and high diversity of genes associated to denitrification in metagenomes of subantarctic coastal sediments exposed to urban pollution. PLoS ONE, 2018, 13, e0207606.	1.1	13
174	Metabolic Interactions between <i>Brachypodium</i> and Pseudomonas fluorescens under Controlled Iron-Limited Conditions. MSystems, 2021, 6, .	1.7	13
175	Metadata harmonization–Standards are the key for a better usage of omics data for integrative microbiome analysis. Environmental Microbiomes, 2022, 17, .	2.2	13
176	Specific monitoring by PCR amplification and bioluminescence of firefly luciferase gene-tagged bacteria added to environmental samples. FEMS Microbiology Ecology, 1994, 15, 193-206.	1.3	12
177	Luminometry and PCR-based monitoring of gene-tagged cyanobacteria in Baltic Sea microcosms. FEMS Microbiology Letters, 1995, 129, 43-49.	0.7	12
178	Visualizing Microbial Community Dynamics via a Controllable Soil Environment. MSystems, 2020, 5, .	1.7	12
179	Enrichment of potential pathogens in marine microbiomes with different degrees of anthropogenic activity. Environmental Pollution, 2021, 268, 115757.	3.7	12
180	Towards "Tera-Terra― Terabase Sequencing of Terrestrial Metagenomes. Microbe Magazine, 2011, 6, 309-315.	0.4	12

#	Article	IF	CITATIONS
181	Xanthohumol microbiome and signature in healthy adults (the XMaS trial): a phase I triple-masked, placebo-controlled clinical trial. Trials, 2020, 21, 835.	0.7	10
182	Detection of Firefly Luciferase-Tagged Bacteria in Environmental Samples. , 1998, 102, 269-284.		9
183	Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions. FEMS Microbiology Ecology, 2017, 93, fiw216.	1.3	9
184	Integrated network modeling approach defines key metabolic responses of soil microbiomes to perturbations. Scientific Reports, 2020, 10, 10882.	1.6	9
185	Molecular imaging of plant–microbe interactions on the <i>Brachypodium</i> seed surface. Analyst, The, 2021, 146, 5855-5865.	1.7	9
186	Metagenomic analysis of microbial communities across a transect from low to highly hydrocarbon ontaminated soils in King George Island, Maritime Antarctica. Geobiology, 2022, 20, 98-111.	1.1	9
187	Activityâ€Based Protein Profiling of Chitin Catabolism. ChemBioChem, 2021, 22, 717-723.	1.3	8
188	Quantitative PCR of environmental samples. , 1996, , 43-61.		8
189	Luminometry and PCR-based monitoring of gene-tagged cyanobacteria in Baltic Sea microcosms. FEMS Microbiology Letters, 1995, 129, 43-49.	0.7	7
190	Both the intratumoral immune and microbial microenvironment are linked to recurrence in human colon cancer: results from a prospective, multicenter nodal ultrastaging trial. Oncotarget, 2018, 9, 23564-23576.	0.8	7
191	Crystal ball – 2013. Microbial Biotechnology, 2013, 6, 3-16.	2.0	6
192	Uncovering Hidden Members and Functions of the Soil Microbiome Using <i>De Novo</i> Metaproteomics. Journal of Proteome Research, 2022, 21, 2023-2035.	1.8	6
193	MetFish: a Metabolomics Pipeline for Studying Microbial Communities in Chemically Extreme Environments. MSystems, 2021, 6, e0105820.	1.7	5
194	Draft Genome Sequence of Paenibacillus polymyxa Strain Mc5Re-14, an Antagonistic Root Endophyte of Matricaria chamomilla. Genome Announcements, 2015, 3, .	0.8	4
195	Terabase Metagenome Sequencing of Grassland Soil Microbiomes. Microbiology Resource Announcements, 2020, 9, .	0.3	4
196	Stewards of a changing planet: commentaries from ISME13 Plenary Lecturers. ISME Journal, 2010, 4, 1079-1080.	4.4	3
197	Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Biointerphases, 2022, 17, .	0.6	3
198	Electron transport to nitrogenase in Rhodospirillum rubrum: the role of NAD(P)H as electron donor and the effect of fluoroacetate on nitrogenase activity. FEMS Microbiology Letters, 2006, 150, 263-267.	0.7	2

#	Article	IF	CITATIONS
199	Complete Genome Sequence of Bacillus amyloliquefaciens Strain Co1-6, a Plant Growth-Promoting Rhizobacterium of <i>Calendula officinalis</i> . Genome Announcements, 2015, 3, .	0.8	2
200	Soil Metagenomics. , 2013, , 1-11.		1
201	The Gut Microbiota: Ecology and Function. , 0, , 39-65.		1
202	Soil Metagenomics. , 2015, , 600-609.		0
203	Metagenomes from Arctic Soil Microbial Communities from the Barrow Environmental Observatory, UtqiaAjvik, AK, USA. Microbiology Resource Announcements, 0, , .	0.3	Ο