
Christopher W. Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5022848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Printed Graphene Based Energy Storage Devices. Scientific Reports, 2017, 7, 42233.	3.3	345
2	Grapheneâ€Rich Wrapped Petalâ€Like Rutile TiO ₂ tuned by Carbon Dots for Highâ€Performance Sodium Storage. Advanced Materials, 2016, 28, 9391-9399.	21.0	262
3	Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors, 2018, 8, 53.	4.7	252
4	Oxygen Vacancies Evoked Blue TiO ₂ (B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors. Advanced Functional Materials, 2017, 27, 1700856.	14.9	212
5	Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. Analytical Chemistry, 2019, 91, 12844-12851.	6.5	176
6	Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. Sensors, 2019, 19, 1204.	3.8	154
7	Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosensors and Bioelectronics, 2016, 77, 1168-1174.	10.1	129
8	Cobalt-based electrode materials for sodium-ion batteries. Chemical Engineering Journal, 2019, 370, 185-207.	12.7	118
9	Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO 2 decorated Graphene oxide nanocomposite screen-printed electrodes. Electrochimica Acta, 2017, 227, 255-266.	5.2	91
10	The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, The, 2012, 137, 1815.	3.5	82
11	Additively manufactured graphitic electrochemical sensing platforms. Chemical Engineering Journal, 2020, 381, 122343.	12.7	77
12	Ultraflexible Screenâ€Printed Graphitic Electroanalytical Sensing Platforms. Electroanalysis, 2014, 26, 262-274.	2.9	69
13	Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid. RSC Advances, 2016, 6, 14474-14482.	3.6	68
14	Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes. Sensors, 2014, 14, 21905-21922.	3.8	65
15	Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response?. Analyst, The, 2016, 141, 2791-2799.	3.5	65
16	Pencil drawn paper based supercapacitors. RSC Advances, 2016, 6, 81130-81141.	3.6	54
17	Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst, The, 2015, 140, 7598-7612.	3.5	53
18	Development of a novel flexible polymer-based biosensor platform for the thermal detection of noradrenaline in aqueous solutions. Chemical Engineering Journal, 2017, 315, 459-468.	12.7	53

#	Article	IF	CITATIONS
19	Nextâ€Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithiumâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 448-453.	4.7	52
20	Calixarene bulk modified screen-printed electrodes (SPCCEs) as a one-shot disposable sensor for the simultaneous detection of lead(II), copper(II) and mercury(II) ions: Application to environmental samples. Sensors and Actuators A: Physical, 2017, 267, 517-525.	4.1	51
21	Pencil it in: pencil drawn electrochemical sensing platforms. Analyst, The, 2016, 141, 4055-4064.	3.5	49
22	Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustainable Energy and Fuels, 2020, 4, 302-311.	4.9	49
23	Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. Journal of Materials Chemistry A, 2017, 5, 4103-4113.	10.3	48
24	Titanium nanoparticles (TiO ₂)/graphene oxide nanosheets (GO): an electrochemical sensing platform for the sensitive and simultaneous determination of benzocaine in the presence of antipyrine. Analyst, The, 2017, 142, 3674-3679.	3.5	48
25	Nextâ€Generation Additive Manufacturing of Complete Standalone Sodiumâ€lon Energy Storage Architectures. Advanced Energy Materials, 2019, 9, 1803019.	19.5	48
26	Screen-printed back-to-back electroanalytical sensors: heavy metal ion sensing. Analyst, The, 2015, 140, 4130-4136.	3.5	47
27	Exploring the electrical wiring of screen-printed configurations utilised in electroanalysis. Analytical Methods, 2015, 7, 1208-1214.	2.7	42
28	Pencil It in: Exploring the Feasibility of Hand-Drawn Pencil Electrochemical Sensors and Their Direct Comparison to Screen-Printed Electrodes. Biosensors, 2016, 6, 45.	4.7	40
29	Mass-producible 2D-MoSe ₂ bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. Sustainable Energy and Fuels, 2017, 1, 74-83.	4.9	39
30	Use of Screenâ€printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. Electroanalysis, 2018, 30, 170-179.	2.9	33
31	A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. Journal of Electroanalytical Chemistry, 2018, 829, 230-240.	3.8	33
32	Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles. Molecules, 2016, 21, 552.	3.8	32
33	Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage Systems. ACS Applied Materials & Interfaces, 2018, 10, 43669-43681.	8.0	32
34	Trace manganese detection <i>via</i> differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms. Analyst, The, 2020, 145, 3424-3430.	3.5	32
35	Analytical determination of heroin, fentanyl and fentalogues using high-performance liquid chromatography with diode array and amperometric detection. Analytical Methods, 2019, 11, 1053-1063.	2.7	30
36	Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega, 2019, 4, 1947-1954.	3.5	30

#	Article	IF	CITATIONS
37	l -Cysteine determination in embryo cell culture media using Co (II)-phthalocyanine modified disposable screen-printed electrodes. Journal of Electroanalytical Chemistry, 2016, 780, 303-310.	3.8	29
38	Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) explored as a potential electrochemical sensor for dopamine: surfactants significantly influence sensor capabilities. Analyst, The, 2017, 142, 1756-1764.	3.5	29
39	Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels. Analytica Chimica Acta, 2016, 934, 1-8.	5.4	24
40	Electrochemical Determination of the Serotonin Reuptake Inhibitor, Dapoxetine, Using Cesium–Gold Nanoparticles. ACS Omega, 2017, 2, 6628-6635.	3.5	23
41	Boron-doped diamond electrodes explored for the electroanalytical detection of 7-methylguanine and applied for its sensing within urine samples. Electrochimica Acta, 2016, 197, 167-178.	5.2	22
42	Can solvent induced surface modifications applied to screen-printed platforms enhance their electroanalytical performance?. Analyst, The, 2016, 141, 2783-2790.	3.5	22
43	Backâ€ŧoâ€Back Screenâ€Printed Electroanalytical Sensors: Extending the Potential Applications of the Simplistic Design. Electroanalysis, 2015, 27, 2295-2301.	2.9	20
44	Detection and quantification of new psychoactive substances (NPSs) within the evolved "legal high― product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD). Analyst, The, 2015, 140, 6283-6294.	3.5	20
45	Metallic Impurities in Graphene Screenâ€Printed Electrodes Can Influence Their Electrochemical Properties. Electroanalysis, 2014, 26, 2429-2433.	2.9	17
46	Ultra Flexible Paper Based Electrochemical Sensors: Effect of Mechanical Contortion upon Electrochemical Performance. Electroanalysis, 2013, 25, 2275-2282.	2.9	16
47	High Yield Synthesis of Hydroxyapatite (HAP) and Palladium Doped HAP via a Wet Chemical Synthetic Route. Catalysts, 2016, 6, 119.	3.5	16
48	Highly sensitive and selective determination of dopamine using screen-printed electrodes modified with nanocomposite of N′-phenyl-p-phenylenediamine/multiwalled carbon nanotubes/nafion. Materials Research Bulletin, 2018, 101, 253-263.	5.2	16
49	Utilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide. Analyst, The, 2016, 141, 1233-1238.	3.5	15
50	Portable electrochemical system using screen-printed electrodes for monitoring corrosion inhibitors. Talanta, 2017, 174, 420-427.	5.5	14
51	Quick Test for Determination of N-Bombs (Phenethylamine Derivatives, NBOMe) Using High-Performance Liquid Chromatography: A Comparison between Photodiode Array and Amperometric Detection. ACS Omega, 2019, 4, 14439-14450.	3.5	14
52	Fundamentals of Screen-Printing Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology, 2016, , 13-23.	0.4	12
53	A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs. Analyst, The, 2018, 143, 3360-3365.	3.5	11
54	Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO2 nanowires. Scientific Reports, 2019, 9, 12814.	3.3	11

Christopher W. Foster

#	Article	IF	CITATIONS
55	Tailoring the electrochemical properties of 2D-hBN <i>via</i> physical linear defects: physicochemical, computational and electrochemical characterisation. Nanoscale Advances, 2020, 2, 264-273.	4.6	11
56	The Mediatorless Electroanalytical Sensing of Sulfide Utilizing Unmodified Graphitic Electrode Materials. Journal of Carbon Research, 2016, 2, 14.	2.7	10
57	Graphene Encapsulated Silicon Carbide Nanocomposites for High and Low Power Energy Storage Applications. Journal of Carbon Research, 2017, 3, 20.	2.7	6
58	Fast Determination of Antioxidant Capacity of Food Samples Using Continuous Amperometric Detection on Polyester Screenâ€printed Graphitic Electrodes. Electroanalysis, 2018, 30, 1192-1197.	2.9	6
59	Development of a Flexible MIP-Based Biosensor Platform for the Thermal Detection of Neurotransmitters. MRS Advances, 2018, 3, 1569-1574.	0.9	5
60	Electrochemical Decoration of Additively Manufactured Graphene Macroelectrodes with MoO ₂ Nanowires: An Approach to Demonstrate the Surface Morphology. Journal of Physical Chemistry C, 2020, 124, 15377-15385.	3.1	5
61	A Facile and Costâ€effective Electroanalytical Strategy for the Quantification of Deoxyguanosine and Deoxyadenosine in Oligonucleotides Using Screenâ€printed Graphite Electrodes. Electroanalysis, 2016, 28, 3066-3074.	2.9	4
62	Reprint of: l-Cysteine determination in embryo cell culture media using Co (II)-phthalocyanine modified disposable screen-printed electrodes. Journal of Electroanalytical Chemistry, 2017, 793, 77-84.	3.8	4
63	Introduction and Current Applications of Screen-Printed Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-12.	0.4	1
64	Nextâ€Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithiumâ€ion Batteries. Batteries and Supercaps, 2019, 2, 399-400.	4.7	0
65	Quality Control/Quality Assurance Analysis of Electrochemical Screen-Printed Sensors. SpringerBriefs in Applied Sciences and Technology, 2016, , 35-56.	0.4	О