Eric D Merkley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5022477/publications.pdf Version: 2024-02-01

		567281	454955
31	1,014	15	30
papers	citations	h-index	g-index
33	33	33	1870
all docs	docs citations	times ranked	citing authors

FRIC D MERKIEV

#	Article	IF	CITATIONS
1	Uncovering Hidden Members and Functions of the Soil Microbiome Using <i>De Novo</i> Metaproteomics. Journal of Proteome Research, 2022, 21, 2023-2035.	3.7	6
2	Bayesian Inference for Integrating <i>Yarrowia lipolytica</i> Multiomics Datasets with Metabolic Modeling. ACS Synthetic Biology, 2021, 10, 2968-2981.	3.8	4
3	<i>De novo</i> sequencing and native mass spectrometry revealed hetero-association of dirigent protein homologs and potential interacting proteins in <i>Forsythia</i> × <i>intermedia</i> . Analyst, The, 2021, 146, 7670-7681.	3.5	0
4	Proteomics for bioforensics. , 2020, , 251-265.		0
5	Flying blind, or just flying under the radar? The underappreciated power of <i>de novo</i> methods of mass spectrometric peptide identification. Protein Science, 2020, 29, 1864-1878.	7.6	23
6	Defending Our Public Biological Databases as a Global Critical Infrastructure. Frontiers in Bioengineering and Biotechnology, 2019, 7, 58.	4.1	13
7	Constructing a Tandem Mass Spectral Library for Forensic Ricin Identification. Journal of Proteome Research, 2019, 18, 3926-3935.	3.7	5
8	Uniformly ¹⁵ N-Labeled Recombinant Ricin A-Chain as an Internal Retention Time Standard for Increased Confidence in Forensic Identification of Ricin by Untargeted Nanoflow Liquid Chromatography-Tandem Mass Spectrometry. Analytical Chemistry, 2019, 91, 13372-13376.	6.5	3
9	Introduction to Forensic Proteomics. ACS Symposium Series, 2019, , 1-8.	0.5	2
10	Probabilistic Limit of Detection for Ricin Identification Using a Shotgun Proteomics Assay. Analytical Chemistry, 2019, 91, 12399-12406.	6.5	8
11	Applications and challenges of forensic proteomics. Forensic Science International, 2019, 297, 350-363.	2.2	39
12	The Statistical Defensibility of Forensic Proteomics. ACS Symposium Series, 2019, , 203-228.	0.5	1
13	Proteomics Goes to Court: A Statistical Foundation for Forensic Toxin/Organism Identification Using Bottom-Up Proteomics. Journal of Proteome Research, 2018, 17, 3075-3085.	3.7	16
14	Ricin-like proteins from the castor plant do not influence liquid chromatography-mass spectrometry detection of ricin in forensically relevant samples. Toxicon, 2017, 140, 18-31.	1.6	18
15	Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague. PLoS ONE, 2017, 12, e0183478.	2.5	6
16	Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach. PLoS ONE, 2015, 10, e0142997.	2.5	17
17	Effects of bacterial inactivation methods on downstream proteomic analysis. Journal of Microbiological Methods, 2015, 112, 3-10.	1.6	7
18	Changes in Protein Expression Across Laboratory and Field Experiments in <i>Geobacter bemidjiensis</i> . Journal of Proteome Research, 2015, 14, 1361-1375.	3.7	18

ERIC D MERKLEY

#	Article	IF	CITATIONS
19	Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments. PLoS Genetics, 2014, 10, e1004872.	3.5	50
20	Distance restraints from crosslinking mass spectrometry: Mining a molecular dynamics simulation database to evaluate lysine–lysine distances. Protein Science, 2014, 23, 747-759.	7.6	243
21	The succinated proteome. Mass Spectrometry Reviews, 2014, 33, 98-109.	5.4	66
22	Live Cell Chemical Profiling of Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium. ACS Chemical Biology, 2014, 9, 291-300.	3.4	35
23	Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking. Journal of the American Society for Mass Spectrometry, 2013, 24, 444-449.	2.8	24
24	Cross-linking and mass spectrometry methodologies to facilitate structural biology: finding a path through the maze. Journal of Structural and Functional Genomics, 2013, 14, 77-90.	1.2	25
25	A temperatureâ€dependent conformational change of NADH oxidase from <i>Thermus thermophilus</i> HB8. Proteins: Structure, Function and Bioinformatics, 2012, 80, 546-555.	2.6	6
26	Detection and Identification of Heme <i>c</i> -Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography–Mass Spectrometry, and Database Searching. Journal of Proteome Research, 2012, 11, 6147-6158.	3.7	9
27	Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. Frontiers in Microbiology, 2012, 3, 37.	3.5	186
28	Identification of <i>c</i> -Type Heme-Containing Peptides Using Nonactivated Immobilized Metal Affinity Chromatography Resin Enrichment and Higher-Energy Collisional Dissociation. Analytical Chemistry, 2011, 83, 7260-7268.	6.5	5
29	Dynameomics: A Comprehensive Database of Protein Dynamics. Structure, 2010, 18, 423-435.	3.3	131
30	Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. Protein Engineering, Design and Selection, 2010, 23, 327-336.	2.1	36
31	Conformational Changes below the Tm:  Molecular Dynamics Studies of the Thermal Pretransition of Ribonuclease A. Biochemistry, 2008, 47, 880-892.	2.5	7