
Bruce A Hay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5022271/publications.pdf Version: 2024-02-01

RRUCE A HAV

#	Article	IF	CITATIONS
1	Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria. Nature Communications, 2022, 13, 1582.	12.8	20
2	Engineering the Composition and Fate of Wild Populations with Gene Drive. Annual Review of Entomology, 2021, 66, 407-434.	11.8	61
3	Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene drive. PLoS Genetics, 2021, 17, e1009385.	3.5	23
4	Gene drive that results in addiction to a temperature-sensitive version of an essential gene triggers population collapse in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
5	Gene drive and resilience through renewal with next generation <i>Cleave and Rescue</i> selfish genetic elements. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9013-9021.	7.1	42
6	A drug-inducible sex-separation technique for insects. Nature Communications, 2020, 11, 2106.	12.8	19
7	Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proceedings of the United States of America, 2019, 116, 6250-6259.	7.1	133
8	Engineered Reciprocal Chromosome Translocations Drive High Threshold, Reversible Population Replacement in Drosophila. ACS Synthetic Biology, 2018, 7, 1359-1370.	3.8	72
9	Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology, 2018, 112, 63-74.	2.1	13
10	Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9343-E9352.	7.1	96
11	Rules of the road for insect gene drive research and testing. Nature Biotechnology, 2017, 35, 716-718.	17.5	74
12	Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants. ELife, 2017, 6, .	6.0	63
13	Mapping a multiplexed zoo of mRNA expression. Development (Cambridge), 2016, 143, 3632-3637.	2.5	198
14	Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila. Nature Communications, 2016, 7, 13100.	12.8	79
15	Identification of Genes Uniquely Expressed in the Germ-Line Tissues of the Jewel Wasp Nasonia vitripennis. G3: Genes, Genomes, Genetics, 2015, 5, 2647-2653.	1.8	16
16	Vectored antibody gene delivery mediates long-term contraception. Current Biology, 2015, 25, R820-R822.	3.9	14
17	Novel Synthetic <i>Medea</i> Selfish Genetic Elements Drive Population Replacement in <i>Drosophila</i> ; a Theoretical Exploration of <i>Medea</i> -Dependent Population Suppression. ACS Synthetic Biology, 2014, 3, 915-928.	3.8	98
18	ldentification of germline transcriptional regulatory elements in Aedes aegypti. Scientific Reports, 2014, 4, 3954.	3.3	35

BRUCE A HAY

#	Article	IF	CITATIONS
19	Medusa: A Novel Gene Drive System for Confined Suppression of Insect Populations. PLoS ONE, 2014, 9, e102694.	2.5	27
20	A Synthetic Gene Drive System for Local, Reversible Modification and Suppression of Insect Populations. Current Biology, 2013, 23, 671-677.	3.9	150
21	Essential role of <i>grim</i> -led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in <i>Drosophila melanogaster</i> . Biology Open, 2013, 2, 283-294.	1.2	20
22	The Developmental Transcriptome of the Mosquito <i>Aedes aegypti</i> , an Invasive Species and Major Arbovirus Vector. G3: Genes, Genomes, Genetics, 2013, 3, 1493-1509.	1.8	189
23	GENERAL PRINCIPLES OF SINGLEâ€CONSTRUCT CHROMOSOMAL GENE DRIVE. Evolution; International Journal of Organic Evolution, 2012, 66, 2150-2166.	2.3	37
24	Confinement of gene drive systems to local populations: A comparative analysis. Journal of Theoretical Biology, 2012, 294, 153-171.	1.7	87
25	MEDEA SELFISH GENETIC ELEMENTS AS TOOLS FOR ALTERING TRAITS OF WILD POPULATIONS: A THEORETICAL ANALYSIS. Evolution; International Journal of Organic Evolution, 2011, 65, 1149-1162.	2.3	66
26	<i>Drosophila</i> caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. Journal of Comparative Neurology, 2011, 519, 34-48.	1.6	38
27	<i>Semele</i> : A Killer-Male, Rescue-Female System for Suppression and Replacement of Insect Disease Vector Populations. Genetics, 2011, 187, 535-551.	2.9	55
28	Inverse Medea as a Novel Gene Drive System for Local Population Replacement: A Theoretical Analysis. Journal of Heredity, 2011, 102, 336-341.	2.4	42
29	Engineering the genomes of wild insect populations: Challenges, and opportunities provided by synthetic Medea selfish genetic elements. Journal of Insect Physiology, 2010, 56, 1402-1413.	2.0	51
30	Inactivation of Both foxo and reaper Promotes Long-Term Adult Neurogenesis in Drosophila. Current Biology, 2010, 20, 643-648.	3.9	172
31	Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. Genes and Development, 2008, 22, 1522-1533.	5.9	44
32	The Drosophila Inhibitor of Apoptosis (IAP) DIAP2 Is Dispensable for Cell Survival, Required for the Innate Immune Response to Gram-negative Bacterial Infection, and Can Be Negatively Regulated by the Reaper/Hid/Grim Family of IAP-binding Apoptosis Inducers. Journal of Biological Chemistry, 2007, 282, 2056-2068.	3.4	80
33	echinus, required for interommatidial cell sorting and cell death in the Drosophila pupal retina, encodes a protein with homology to ubiquitin-specific proteases. BMC Developmental Biology, 2007, 7, 82.	2.1	10
34	A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science, 2007, 316, 597-600.	12.6	218
35	A Synthetic Maternal-Effect Selfish Genetic Element Drives Population Replacement in <i>Drosophila</i> . Science, 2007, 316, 597-600.	12.6	188
36	Caspase-Dependent Cell Death inDrosophila. Annual Review of Cell and Developmental Biology, 2006, 22, 623-650.	9.4	179

BRUCE A HAY

#	Article	IF	CITATIONS
37	The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development (Cambridge), 2006, 133, 3305-3315.	2.5	130
38	Identifying MicroRNA Regulators of Cell Death in <i>Drosophila</i> . , 2006, 342, 229-240.		9
39	Structure and Activation Mechanism of the Drosophila Initiator Caspase Dronc. Journal of Biological Chemistry, 2006, 281, 8667-8674.	3.4	45
40	The genetics of cell death: approaches, insights and opportunities in Drosophila. Nature Reviews Genetics, 2004, 5, 911-922.	16.3	81
41	MicroRNAs and the regulation of cell death. Trends in Genetics, 2004, 20, 617-624.	6.7	379
42	Compensatory Proliferation Induced by Cell Death in the Drosophila Wing Disc Requires Activity of the Apical Cell Death Caspase Dronc in a Nonapoptotic Role. Current Biology, 2004, 14, 1262-1266.	3.9	325
43	The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism. Current Biology, 2003, 13, 790-795.	3.9	904
44	Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nature Structural and Molecular Biology, 2003, 10, 892-898.	8.2	131
45	Coupling Cell Growth, Proliferation, and Death. Developmental Cell, 2003, 5, 361-363.	7.0	43
46	Reaper Is Regulated by IAP-mediated Ubiquitination. Journal of Biological Chemistry, 2003, 278, 4028-4034.	3.4	60
47	Multiple Apoptotic Caspase Cascades Are Required in Nonapoptotic Roles for Drosophila Spermatid Individualization. PLoS Biology, 2003, 2, e15.	5.6	158
48	The Drosophila DIAP1 Protein Is Required to Prevent Accumulation of a Continuously Generated, Processed Form of the Apical Caspase DRONC. Journal of Biological Chemistry, 2002, 277, 49644-49650.	3.4	148
49	The role of cytochrome c in caspase activation in Drosophila melanogaster cells. Journal of Cell Biology, 2002, 156, 1089-1098.	5.2	178
50	Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biology, 2002, 4, 416-424.	10.3	356
51	Drosophila Bruce Can Potently Suppress Rpr- and Grim-Dependent but Not Hid-Dependent Cell Death. Current Biology, 2002, 12, 1164-1168.	3.9	72
52	Sculpture of a fly's head. Nature, 2002, 418, 926-927.	27.8	3
53	A pathway of signals regulating effector and initiator caspases in the developing <i>Drosophila</i> eye. Development (Cambridge), 2002, 129, 3269-3278.	2.5	149
54	Structural Analysis of a Functional DIAP1 Fragment Bound to Grim and Hid Peptides. Molecular Cell, 2001, 8, 95-104.	9.7	113

BRUCE A HAY

#	Article	IF	CITATIONS
55	Comparative Genomics of the Eukaryotes. Science, 2000, 287, 2204-2215.	12.6	1,573
56	Monitoring Activity of Caspases and Their Regulators in Yeast Saccharomyces cerevisiae. Methods in Enzymology, 2000, 322, 162-174.	1.0	15
57	Cell Death Regulation in Drosophila. Journal of Cell Biology, 2000, 150, F69-F76.	5.2	100
58	The Drosophila Caspase DRONC Cleaves following Glutamate or Aspartate and Is Regulated by DIAP1, HID, and GRIM. Journal of Biological Chemistry, 2000, 275, 27084-27093.	3.4	184
59	The Drosophila Caspase Inhibitor DIAP1 Is Essential for Cell Survival and Is Negatively Regulated by HID. Cell, 1999, 98, 453-463.	28.9	477
60	Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell, 1995, 83, 1253-1262.	28.9	735