## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5021166/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Naturally occurring prenylated stilbenoids: food sources, biosynthesis, applications and health benefits. Critical Reviews in Food Science and Nutrition, 2023, 63, 8083-8106.                          | 10.3 | 4         |
| 2  | Prenylated flavonoids in foods and their applications on cancer prevention. Critical Reviews in Food<br>Science and Nutrition, 2022, 62, 5067-5080.                                                     | 10.3 | 18        |
| 3  | Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity. Food Chemistry, 2022, 373, 131374.                                                       | 8.2  | 49        |
| 4  | Structure identification of a polysaccharide in mushroom Lingzhi spore and its immunomodulatory activity. Carbohydrate Polymers, 2022, 278, 118939.                                                     | 10.2 | 27        |
| 5  | Heterologous biosynthesis of prenylated resveratrol and evaluation of antioxidant activity. Food<br>Chemistry, 2022, 378, 132118.                                                                       | 8.2  | 6         |
| 6  | Effect of Î <sup>3</sup> -irradiation on structure, physicochemical property and bioactivity of soluble dietary fiber<br>in navel orange peel. Food Chemistry: X, 2022, 14, 100274.                     | 4.3  | 14        |
| 7  | Structure, stability and bioaccessibility of icaritin-loaded pectin nanoparticle. Food Hydrocolloids, 2022, 129, 107663.                                                                                | 10.7 | 16        |
| 8  | Effect of lactobacteria fermentation on structure and physicochemical properties of Chinese yam starch (Dioscorea opposita Thunb.). Food Chemistry, 2022, 387, 132873.                                  | 8.2  | 11        |
| 9  | Structure characterization of soybean peptides and their protective activity against intestinal inflammation. Food Chemistry, 2022, 387, 132868.                                                        | 8.2  | 16        |
| 10 | Novel strategy to produce prenylated resveratrol by prenyltransferase iacE and evaluation of<br>neuroprotective mechanisms. Biochemical and Biophysical Research Communications, 2022, 609,<br>127-133. | 2.1  | 2         |
| 11 | Structure identification of walnut peptides and evaluation of cellular antioxidant activity. Food<br>Chemistry, 2022, 388, 132943.                                                                      | 8.2  | 35        |
| 12 | The bioactivity of prenylated stilbenoids and their structure-activity relationship. Food Research<br>International, 2022, 157, 111275.                                                                 | 6.2  | 6         |
| 13 | Physicochemical properties and microstructure of Chinese yam (Dioscorea opposita Thunb.) flour.<br>Food Hydrocolloids, 2021, 113, 106448.                                                               | 10.7 | 8         |
| 14 | Chemical compositions and sensory characteristics of pork rib and Silkie chicken soups prepared by various cooking techniques. Food Chemistry, 2021, 345, 128755.                                       | 8.2  | 31        |
| 15 | An update of prenylated phenolics: Food sources, chemistry and health benefits. Trends in Food<br>Science and Technology, 2021, 108, 197-213.                                                           | 15.1 | 35        |
| 16 | Phenolics in Citrus aurantium fruit identified by UHPLC-MS/MS and their bioactivities. LWT - Food<br>Science and Technology, 2021, 147, 111671.                                                         | 5.2  | 17        |
| 17 | Structure Differences of Water Soluble Polysaccharides in Astragalus membranaceus Induced by<br>Origin and Their Bioactivity. Foods, 2021, 10, 1755.                                                    | 4.3  | 11        |
| 18 | Identification of prenylated phenolics in mulberry leaf and their neuroprotective activity.<br>Phytomedicine, 2021, 90, 153641.                                                                         | 5.3  | 17        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structure identification of soybean peptides and their immunomodulatory activity. Food Chemistry, 2021, 359, 129970.                                                                                          | 8.2  | 30        |
| 20 | Characterization of polysaccharide structure in Citrus reticulate â€~Chachi' peel during storage and their bioactivity. Carbohydrate Research, 2021, 508, 108398.                                             | 2.3  | 19        |
| 21 | Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. Environmental Pollution, 2021, 288, 117793.                                                             | 7.5  | 18        |
| 22 | Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with<br>Penicillium digitatum and Geotrichum citri-aurantii. Pesticide Biochemistry and Physiology, 2021, 179,<br>104976. | 3.6  | 11        |
| 23 | Flavonoid glycosides and other bioactive compounds in Citrus reticulate â€~Chachi' peel analysed by tandem mass spectrometry and their changes during storage. Carbohydrate Research, 2021, 510, 108462.      | 2.3  | 5         |
| 24 | UHPLC–MS/MS Analysis on Flavonoids Composition in Astragalus membranaceus and Their Antioxidant<br>Activity. Antioxidants, 2021, 10, 1852.                                                                    | 5.1  | 18        |
| 25 | Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chemistry, 2020, 309, 125733.                                                          | 8.2  | 62        |
| 26 | Metabolomic analyses of dry lemon slice during storage by NMR. Food Frontiers, 2020, 1, 180-191.                                                                                                              | 7.4  | 10        |
| 27 | Detection of toxic methylenecyclopropylglycine and hypoglycin A in litchi aril of three Chinese cultivars. Food Chemistry, 2020, 327, 127013.                                                                 | 8.2  | 5         |
| 28 | Substrate specificity change of a flavonoid prenyltransferase AhPT1 induced by metal ion.<br>International Journal of Biological Macromolecules, 2020, 153, 264-275.                                          | 7.5  | 10        |
| 29 | Biomimetic Total Syntheses of Sanctis A–B with Structure Revision. Organic Letters, 2020, 22, 934-938.                                                                                                        | 4.6  | 19        |
| 30 | Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food<br>Chemistry, 2020, 315, 126236.                                                                             | 8.2  | 45        |
| 31 | Structure and physicochemical properties of native starch and resistant starch in Chinese yam<br>(Dioscorea opposita Thunb.). Carbohydrate Polymers, 2020, 237, 116188.                                       | 10.2 | 50        |
| 32 | The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radical Biology and Medicine, 2020, 152, 207-215.                                                                           | 2.9  | 35        |
| 33 | Identification of moracin N in mulberry leaf and evaluation of antioxidant activity. Food and Chemical<br>Toxicology, 2019, 132, 110730.                                                                      | 3.6  | 32        |
| 34 | lcariin as a Preservative to Maintain the Fruit Quality of Banana During Postharvest Storage. Food and<br>Bioprocess Technology, 2019, 12, 1766-1775.                                                         | 4.7  | 13        |
| 35 | Pericarp and seed of litchi and longan fruits: constituent, extraction, bioactive activity, and potential utilization. Journal of Zhejiang University: Science B, 2019, 20, 503-512.                          | 2.8  | 36        |
| 36 | Cross-Kingdom Small RNAs Among Animals, Plants and Microbes. Cells, 2019, 8, 371.                                                                                                                             | 4.1  | 80        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Immunomodulatory mechanism of α- <scp>d</scp> -(1→6)-glucan isolated from banana. RSC Advances, 2019,<br>9, 6995-7003.                                                                                             | 3.6  | 15        |
| 38 | Effect of morin on the degradation of water-soluble polysaccharides in banana during softening.<br>Food Chemistry, 2019, 287, 346-353.                                                                             | 8.2  | 19        |
| 39 | Natural Estrogen Receptor Modulators and Their Heterologous Biosynthesis. Trends in<br>Endocrinology and Metabolism, 2019, 30, 66-76.                                                                              | 7.1  | 25        |
| 40 | Identification of an immunostimulatory polysaccharide in banana. Food Chemistry, 2019, 277, 46-53.                                                                                                                 | 8.2  | 32        |
| 41 | The structure changes of water-soluble polysaccharides in papaya during ripening. International<br>Journal of Biological Macromolecules, 2018, 115, 152-156.                                                       | 7.5  | 25        |
| 42 | Site-selective phenol acylation mediated by thioacids via visible light photoredox catalysis. Organic<br>Chemistry Frontiers, 2018, 5, 1312-1319.                                                                  | 4.5  | 8         |
| 43 | A Bioinspired Cascade Sequence Enables Facile Assembly of<br>Methanodibenzo[ <i>b</i> , <i>f</i> ][1,5]dioxocin Flavonoid Scaffold. Organic Letters, 2018, 20, 546-549.                                            | 4.6  | 27        |
| 44 | Structure characterisation of polysaccharides in vegetable "okra―and evaluation of hypoglycemic<br>activity. Food Chemistry, 2018, 242, 211-216.                                                                   | 8.2  | 147       |
| 45 | Structure identification of an arabinogalacturonan in Citrus reticulata Blanco â€~Chachiensis' peel.<br>Food Hydrocolloids, 2018, 84, 481-488.                                                                     | 10.7 | 34        |
| 46 | Morin as a Preservative for Delaying Senescence of Banana. Biomolecules, 2018, 8, 52.                                                                                                                              | 4.0  | 10        |
| 47 | New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends in Food Science and Technology, 2018, 79, 116-124.                                                                                  | 15.1 | 152       |
| 48 | Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians. Food Chemistry, 2017, 229, 663-673.                                                        | 8.2  | 54        |
| 49 | Valorization of Dacryodes rostrata fruit through the characterization of its oil. Food Chemistry, 2017, 235, 257-264.                                                                                              | 8.2  | 7         |
| 50 | Structure, bioactivity, and synthesis of methylated flavonoids. Annals of the New York Academy of Sciences, 2017, 1398, 120-129.                                                                                   | 3.8  | 115       |
| 51 | Identification of a flavonoid C -glycoside as potent antioxidant. Free Radical Biology and Medicine, 2017, 110, 92-101.                                                                                            | 2.9  | 68        |
| 52 | Structure characteristics of an acidic polysaccharide purified from banana (Musa nana Lour.) pulp<br>and its enzymatic degradation. International Journal of Biological Macromolecules, 2017, 101, 299-303.        | 7.5  | 38        |
| 53 | Effect of Vacuum Impregnation Combined with Calcium Lactate on the Firmness and Polysaccharide<br>Morphology of Kyoho Grapes (Vitis vinifera x V. labrusca). Food and Bioprocess Technology, 2017, 10,<br>699-709. | 4.7  | 38        |
| 54 | Synthesis of prenylated flavonols and their potents as estrogen receptor modulator. Scientific Reports, 2017, 7, 12445.                                                                                            | 3.3  | 16        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Biomimetic-Inspired Syntheses of Myrtucommuacetalone and Myrtucommulone J. Organic Letters, 2017, 19, 4786-4789.                                                                                                           | 4.6  | 29        |
| 56 | Analyses of quality and metabolites levels of okra during postharvest senescence by 1 H-high resolution NMR. Postharvest Biology and Technology, 2017, 132, 171-178.                                                       | 6.0  | 22        |
| 57 | Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant<br>aid for treatment of turbid water. Environmental Science and Pollution Research, 2017, 24, 2876-2889.             | 5.3  | 42        |
| 58 | Metabolomic analyses of banana during postharvest senescence by 1H-high resolution-NMR. Food Chemistry, 2017, 218, 406-412.                                                                                                | 8.2  | 70        |
| 59 | Influence of Butylated Hydroxyanisole on the Growth, Hyphal Morphology, and the Biosynthesis of<br>Fumonisins in Fusarium proliferatum. Frontiers in Microbiology, 2016, 7, 1038.                                          | 3.5  | 11        |
| 60 | Transformation of Litchi Pericarp-Derived Condensed Tannin with Aspergillus awamori. International<br>Journal of Molecular Sciences, 2016, 17, 1067.                                                                       | 4.1  | 6         |
| 61 | Regiospecific synthesis of prenylated flavonoids by a prenyltransferase cloned from Fusarium oxysporum. Scientific Reports, 2016, 6, 24819.                                                                                | 3.3  | 19        |
| 62 | Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. Journal of Proteomics, 2016, 148, 1-11.                                               | 2.4  | 9         |
| 63 | Structure identification of a polysaccharide purified from litchi ( Litchi chinensis Sonn.) pulp.<br>Carbohydrate Polymers, 2016, 137, 570-575.                                                                            | 10.2 | 75        |
| 64 | Structure identification of a polysaccharide purified from Lycium barbarium fruit. International<br>Journal of Biological Macromolecules, 2016, 82, 696-701.                                                               | 7.5  | 86        |
| 65 | The Plant Resources, Structure Characteristics, Biological Activities and Synthesis of Pyranoflavonoids. Current Medicinal Chemistry, 2016, 23, 3078-3115.                                                                 | 2.4  | 9         |
| 66 | Quality analysis of Polygala tenuifolia root byÂultrahigh performance liquid chromatography–tandem<br>mass spectrometry andAgas chromatography–mass spectrometry. Journal of Food and Drug Analysis,<br>2015, 23, 144-151. | 1.9  | 19        |
| 67 | Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends in Food<br>Science and Technology, 2015, 44, 93-104.                                                                         | 15.1 | 131       |
| 68 | Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity. Free Radical Biology and Medicine, 2015, 84, 171-184.                               | 2.9  | 78        |
| 69 | Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chemistry, 2015, 167, 168-174.                                                                   | 8.2  | 60        |
| 70 | Identification of flavonoids in litchi (Litchi chinensis Sonn.) leaf and evaluation of anticancer<br>activities. Journal of Functional Foods, 2014, 6, 555-563.                                                            | 3.4  | 92        |
| 71 | Identification of sesquilignans in litchi (Litchi chinensis Sonn.) leaf and their anticancer activities.<br>Journal of Functional Foods, 2014, 8, 26-34.                                                                   | 3.4  | 32        |
| 72 | Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori. Food Chemistry, 2014, 145, 220-227.                           | 8.2  | 67        |

| #  | Article                                                                                                                                                                                                                                                                       | IF                | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 73 | Production of nigragillin and dihydrophaseic acid by biotransformation of litchi pericarp with<br>Aspergillus awamori and their antioxidant activities. Journal of Functional Foods, 2014, 7, 278-286.                                                                        | 3.4               | 15           |
| 74 | Analysis of Chinese Olive Cultivars Difference by the Structural Characteristics of Oligosaccharides.<br>Food Analytical Methods, 2013, 6, 1529-1536.                                                                                                                         | 2.6               | 7            |
| 75 | Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv. â€ <sup>~</sup> Brazil') fruit during<br>storage. Scientia Horticulturae, 2013, 160, 208-212.                                                                                                      | 3.6               | 43           |
| 76 | Phytochemical analyses of Ziziphus jujuba Mill. var. spinosa seed by ultrahigh performance liquid<br>chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Analyst, The,<br>2013, 138, 6881.                                                      | 3.5               | 45           |
| 77 | Structural Identification of (1→6)-α- <scp>d</scp> -Glucan, a Key Responsible for the Health Benefits of Longan, and Evaluation of Anticancer Activity. Biomacromolecules, 2013, 14, 1999-2003.                                                                               | 5.4               | 90           |
| 78 | Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity<br>evaluation. Food Chemistry, 2013, 136, 563-568.                                                                                                                    | 8.2               | 98           |
| 79 | Improved Growth of <i>Lactobacillus bulgaricus</i> and <i>Streptococcus thermophilus</i> as well as<br>Increased Antioxidant Activity by Biotransforming Litchi Pericarp Polysaccharide with <i>Aspergillus<br/>awamori</i> . BioMed Research International, 2013, 2013, 1-7. | 1.9               | 11           |
| 80 | Enhanced DPPH radical scavenging activity and DNA protection effect of litchi pericarp extract by Aspergillus awamoribioconversion. Chemistry Central Journal, 2012, 6, 108.                                                                                                  | 2.6               | 19           |
| 81 | Ultrasound-Assisted Extraction of Phenolics from Longan (Dimocarpus longan Lour.) Fruit Seed with<br>Artificial Neural Network and Their Antioxidant Activity. Food Analytical Methods, 2012, 5, 1244-1251.                                                                   | 2.6               | 23           |
| 82 | Structural analysis of water-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their in vivo antioxidant activities. Carbohydrate Polymers, 2012, 87, 343-347.                                                                                        | 10.2              | 40           |
| 83 | Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra<br>(MAXIM.) HARA leaf. Food Chemistry, 2012, 130, 417-424.                                                                                                                       | 8.2               | 99           |
| 84 | Prooxidant activities of quercetin, p-courmaric acid and their derivatives analysed by quantitative structure–activity relationship. Food Chemistry, 2012, 131, 508-512.                                                                                                      | 8.2               | 44           |
| 85 | Structural characterisation of acid- and alkali-soluble polysaccharides in the fruiting body of<br>Dictyophora indusiata and their immunomodulatory activities. Food Chemistry, 2012, 132, 739-743.                                                                           | 8.2               | 29           |
| 86 | Structural Evaluation of Myofibrillar Proteins during Processing of Cantonese Sausage by Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2011, 59, 11070-11077.                                                                                               | 5.2               | 70           |
| 87 | Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan) Tj ETQq1 I                                                                                                                                                                   | 1 0,784314<br>6.2 | 4 rgBT /Over |
| 88 | Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chemistry, 2011, 124, 551-555.                                                                                                                 | 8.2               | 116          |
| 89 | Quality attributes and cell wall properties of strawberries (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chemistry, 2011, 126, 450-459.                                                                                                                  | 8.2               | 90           |
| 90 | Structural characteristics of oligosaccharides from soy sauce lees and their potential prebiotic effect on lactic acid bacteria. Food Chemistry, 2011, 126, 590-594.                                                                                                          | 8.2               | 40           |

|     |                                                                                                                                                                                  | Bao Yang                       |                   |                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|--------------------|
| #   | Article                                                                                                                                                                          |                                | IF                | CITATIONS          |
| 91  | Ultrasound-assited extraction and structural identification of polysaccharides from Isoc<br>lophanthoides var. gerardianus (Bentham) H. Hara. Carbohydrate Polymers, 2011, 85, 5 | don<br>541-547.                | 10.2              | 46                 |
| 92  | Effect of methylation on the structure and radical scavenging activity of polysaccharide longan (Dimocarpus longan Lour.) fruit pericarp. Food Chemistry, 2010, 118, 364-368.    | es from                        | 8.2               | 78                 |
| 93  | Crystalline, thermal and textural characteristics of starches isolated from chestnut (Ca                                                                                         | stanea) Tj ETQq1 1 0.7843      | 14 rgBT /C<br>8.2 | verlock 10         |
| 94  | APPLICATION OF ULTRASONICATION OR HIGHâ€PRESSURE EXTRACTION OF FLAVONO<br>PERICARP. Journal of Food Process Engineering, 2009, 32, 828-843.                                      | DIDS FROM LITCHI FRUIT         | 2.9               | 82                 |
| 95  | Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit per<br>Chemistry, 2009, 112, 428-431.                                                       | ricarp. Food                   | 8.2               | 73                 |
| 96  | Modification of hemicellulose polysaccharides during ripening of postharvest banana fi<br>Chemistry, 2009, 115, 43-47.                                                           | ruit. Food                     | 8.2               | 47                 |
| 97  | Structural characterisation of polysaccharides purified from longan (Dimocarpus longa fruit pericarp. Food Chemistry, 2009, 115, 609-614.                                        | n Lour.)                       | 8.2               | 116                |
| 98  | Structural Characteristics and Antioxidant Activities of Oligosaccharides from Longan F<br>Pericarp. Journal of Agricultural and Food Chemistry, 2009, 57, 9293-9298.            | ruit                           | 5.2               | 41                 |
| 99  | Extraction and structural identification of alkali-soluble polysaccharides of longan (Dim                                                                                        | ocarpus) Tj ETQq1 1 0.784      | 314 rgBT          | /Qyerlock 1        |
| 100 | Effects of ultrasonic extraction on the physical and chemical properties of polysacchari<br>longan fruit pericarp. Polymer Degradation and Stability, 2008, 93, 268-272.         | des from                       | 5.8               | 86                 |
| 101 | Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chemistry, 2008, 106, 685-690.           |                                | 8.2               | 231                |
| 102 | Extraction of pepsin-soluble collagen from grass carp (Ctenopharyngodon idella) skin ι<br>artificial neural network. Food Chemistry, 2008, 111, 683-686.                         | ising an                       | 8.2               | 46                 |
| 103 | Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi                                                                                           | chinensis) Tj ETQq1 1 0.78<br> | 4314 rgB1<br>3.8  | - /Overlock<br>149 |
| 104 | Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to antioxidant activities. Food Chemistry, 2006, 98, 539-544.                           | their                          | 8.2               | 113                |