Bao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5021166/publications.pdf

Version: 2024-02-01

104 4,683 39 63
papers citations h-index g-index

104 104 104 5024 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chemistry, 2008, 106, 685-690.	8.2	231
2	New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends in Food Science and Technology, 2018, 79, 116-124.	15.1	152
3	Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis) Tj ETQq1 1 0.784	4314 rgBT	/Overlock 1 149
4	Structure characterisation of polysaccharides in vegetable "okra―and evaluation of hypoglycemic activity. Food Chemistry, 2018, 242, 211-216.	8.2	147
5	Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan) Tj ETQq $1\ 1$	0,784314 6.2	rgBT /Overlo
6	Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends in Food Science and Technology, 2015, 44, 93-104.	15.1	131
7	Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chemistry, 2009, 115, 609-614.	8.2	116
8	Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chemistry, 2011, 124, 551-555.	8.2	116
9	Structure, bioactivity, and synthesis of methylated flavonoids. Annals of the New York Academy of Sciences, 2017, 1398, 120-129.	3.8	115
10	Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chemistry, 2006, 98, 539-544.	8.2	113
11	Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra (MAXIM.) HARA leaf. Food Chemistry, 2012, 130, 417-424.	8.2	99
12	Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. Food Chemistry, 2013, 136, 563-568.	8.2	98
13	Identification of flavonoids in litchi (Litchi chinensis Sonn.) leaf and evaluation of anticancer activities. Journal of Functional Foods, 2014, 6, 555-563.	3.4	92
14	Quality attributes and cell wall properties of strawberries (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chemistry, 2011, 126, 450-459.	8.2	90
15	Structural Identification of (1â†'6)-α- <scp>d</scp> -Glucan, a Key Responsible for the Health Benefits of Longan, and Evaluation of Anticancer Activity. Biomacromolecules, 2013, 14, 1999-2003.	5.4	90
16	Effects of ultrasonic extraction on the physical and chemical properties of polysaccharides from longan fruit pericarp. Polymer Degradation and Stability, 2008, 93, 268-272.	5.8	86
17	Structure identification of a polysaccharide purified from Lycium barbarium fruit. International Journal of Biological Macromolecules, 2016, 82, 696-701.	7.5	86
18	APPLICATION OF ULTRASONICATION OR HIGHâ€PRESSURE EXTRACTION OF FLAVONOIDS FROM LITCHI FRUIT PERICARP. Journal of Food Process Engineering, 2009, 32, 828-843.	2.9	82

#	Article	IF	Citations
19	Cross-Kingdom Small RNAs Among Animals, Plants and Microbes. Cells, 2019, 8, 371.	4.1	80
20	Effect of methylation on the structure and radical scavenging activity of polysaccharides from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chemistry, 2010, 118, 364-368.	8.2	78
21	Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity. Free Radical Biology and Medicine, 2015, 84, 171-184.	2.9	78
22	Structure identification of a polysaccharide purified from litchi (Litchi chinensis Sonn.) pulp. Carbohydrate Polymers, 2016, 137, 570-575.	10.2	75
23	Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit pericarp. Food Chemistry, 2009, 112, 428-431.	8.2	7 3
24	Structural Evaluation of Myofibrillar Proteins during Processing of Cantonese Sausage by Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2011, 59, 11070-11077.	5.2	70
25	Metabolomic analyses of banana during postharvest senescence by 1H-high resolution-NMR. Food Chemistry, 2017, 218, 406-412.	8.2	70
26	Identification of a flavonoid C -glycoside as potent antioxidant. Free Radical Biology and Medicine, 2017, 110, 92-101.	2.9	68
27	Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori. Food Chemistry, 2014, 145, 220-227.	8.2	67
28	Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chemistry, 2020, 309, 125733.	8.2	62
29	Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chemistry, 2015, 167, 168-174.	8.2	60
30	Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians. Food Chemistry, 2017, 229, 663-673.	8.2	54
31	Structure and physicochemical properties of native starch and resistant starch in Chinese yam (Dioscorea opposita Thunb.). Carbohydrate Polymers, 2020, 237, 116188.	10.2	50
32	Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity. Food Chemistry, 2022, 373, 131374.	8.2	49
33	Modification of hemicellulose polysaccharides during ripening of postharvest banana fruit. Food Chemistry, 2009, 115, 43-47.	8.2	47
34	Extraction of pepsin-soluble collagen from grass carp (Ctenopharyngodon idella) skin using an artificial neural network. Food Chemistry, 2008, 111, 683-686.	8.2	46
35	Ultrasound-assited extraction and structural identification of polysaccharides from Isodon lophanthoides var. gerardianus (Bentham) H. Hara. Carbohydrate Polymers, 2011, 85, 541-547.	10.2	46
36	Phytochemical analyses of Ziziphus jujuba Mill. var. spinosa seed by ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Analyst, The, 2013, 138, 6881.	3.5	45

#	Article	IF	Citations
37	Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chemistry, 2020, 315, 126236.	8.2	45
38	Prooxidant activities of quercetin, p-courmaric acid and their derivatives analysed by quantitative structure–activity relationship. Food Chemistry, 2012, 131, 508-512.	8.2	44
39	Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv.  Brazil') fruit during storage. Scientia Horticulturae, 2013, 160, 208-212.	3.6	43
40	Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water. Environmental Science and Pollution Research, 2017, 24, 2876-2889.	5.3	42
41	Structural Characteristics and Antioxidant Activities of Oligosaccharides from Longan Fruit Pericarp. Journal of Agricultural and Food Chemistry, 2009, 57, 9293-9298.	5.2	41
42	Structural characteristics of oligosaccharides from soy sauce lees and their potential prebiotic effect on lactic acid bacteria. Food Chemistry, 2011, 126, 590-594.	8.2	40
43	Structural analysis of water-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their in vivo antioxidant activities. Carbohydrate Polymers, 2012, 87, 343-347.	10.2	40
44	Structure characteristics of an acidic polysaccharide purified from banana (Musa nana Lour.) pulp and its enzymatic degradation. International Journal of Biological Macromolecules, 2017, 101, 299-303.	7.5	38
45	Effect of Vacuum Impregnation Combined with Calcium Lactate on the Firmness and Polysaccharide Morphology of Kyoho Grapes (Vitis vinifera x V. labrusca). Food and Bioprocess Technology, 2017, 10, 699-709.	4.7	38
46	Pericarp and seed of litchi and longan fruits: constituent, extraction, bioactive activity, and potential utilization. Journal of Zhejiang University: Science B, 2019, 20, 503-512.	2.8	36
47	The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radical Biology and Medicine, 2020, 152, 207-215.	2.9	35
48	An update of prenylated phenolics: Food sources, chemistry and health benefits. Trends in Food Science and Technology, 2021, 108, 197-213.	15.1	35
49	Structure identification of walnut peptides and evaluation of cellular antioxidant activity. Food Chemistry, 2022, 388, 132943.	8.2	35
50	Structure identification of an arabinogalacturonan in Citrus reticulata Blanco â€~Chachiensis' peel. Food Hydrocolloids, 2018, 84, 481-488.	10.7	34
51	Crystalline, thermal and textural characteristics of starches isolated from chestnut (Castanea) Tj ETQq1 1 0.7843	14.rgBT/0	Ovgrlock 10
52	Identification of sesquilignans in litchi (Litchi chinensis Sonn.) leaf and their anticancer activities. Journal of Functional Foods, 2014, 8, 26-34.	3.4	32
53	Identification of moracin N in mulberry leaf and evaluation of antioxidant activity. Food and Chemical Toxicology, 2019, 132, 110730.	3.6	32
54	Identification of an immunostimulatory polysaccharide in banana. Food Chemistry, 2019, 277, 46-53.	8.2	32

#	Article	IF	Citations
55	Chemical compositions and sensory characteristics of pork rib and Silkie chicken soups prepared by various cooking techniques. Food Chemistry, 2021, 345, 128755.	8.2	31
56	Structure identification of soybean peptides and their immunomodulatory activity. Food Chemistry, 2021, 359, 129970.	8.2	30
57	Structural characterisation of acid- and alkali-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their immunomodulatory activities. Food Chemistry, 2012, 132, 739-743.	8.2	29
58	Biomimetic-Inspired Syntheses of Myrtucommuacetalone and Myrtucommulone J. Organic Letters, 2017, 19, 4786-4789.	4.6	29
59	A Bioinspired Cascade Sequence Enables Facile Assembly of Methanodibenzo[<i>b</i> , <i>f</i>][1,5]dioxocin Flavonoid Scaffold. Organic Letters, 2018, 20, 546-549.	4.6	27
60	Structure identification of a polysaccharide in mushroom Lingzhi spore and its immunomodulatory activity. Carbohydrate Polymers, 2022, 278, 118939.	10.2	27
61	The structure changes of water-soluble polysaccharides in papaya during ripening. International Journal of Biological Macromolecules, 2018, 115, 152-156.	7. 5	25
62	Natural Estrogen Receptor Modulators and Their Heterologous Biosynthesis. Trends in Endocrinology and Metabolism, 2019, 30, 66-76.	7.1	25
63	Ultrasound-Assisted Extraction of Phenolics from Longan (Dimocarpus longan Lour.) Fruit Seed with Artificial Neural Network and Their Antioxidant Activity. Food Analytical Methods, 2012, 5, 1244-1251.	2.6	23
64	Analyses of quality and metabolites levels of okra during postharvest senescence by $1\mathrm{H}$ -high resolution NMR. Postharvest Biology and Technology, 2017, 132, 171-178.	6.0	22
65	Extraction and structural identification of alkali-soluble polysaccharides of longan (Dimocarpus) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 5.6	19gerlock 1
66	Enhanced DPPH radical scavenging activity and DNA protection effect of litchi pericarp extract by Aspergillus awamoribioconversion. Chemistry Central Journal, 2012, 6, 108.	2.6	19
67	Quality analysis of Polygala tenuifolia root byÂultrahigh performance liquid chromatography–tandem mass spectrometry andÂgas chromatography–mass spectrometry. Journal of Food and Drug Analysis, 2015, 23, 144-151.	1.9	19
68	Regiospecific synthesis of prenylated flavonoids by a prenyltransferase cloned from Fusarium oxysporum. Scientific Reports, 2016, 6, 24819.	3.3	19
69	Effect of morin on the degradation of water-soluble polysaccharides in banana during softening. Food Chemistry, 2019, 287, 346-353.	8.2	19
70	Biomimetic Total Syntheses of Sanctis A–B with Structure Revision. Organic Letters, 2020, 22, 934-938.	4.6	19
71	Characterization of polysaccharide structure in Citrus reticulate  Chachi' peel during storage and their bioactivity. Carbohydrate Research, 2021, 508, 108398.	2.3	19
72	Prenylated flavonoids in foods and their applications on cancer prevention. Critical Reviews in Food Science and Nutrition, 2022, 62, 5067-5080.	10.3	18

#	Article	IF	Citations
73	Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. Environmental Pollution, 2021, 288, 117793.	7.5	18
74	UHPLC–MS/MS Analysis on Flavonoids Composition in Astragalus membranaceus and Their Antioxidant Activity. Antioxidants, 2021, 10, 1852.	5.1	18
75	Phenolics in Citrus aurantium fruit identified by UHPLC-MS/MS and their bioactivities. LWT - Food Science and Technology, 2021, 147, 111671.	5.2	17
76	Identification of prenylated phenolics in mulberry leaf and their neuroprotective activity. Phytomedicine, 2021, 90, 153641.	5.3	17
77	Synthesis of prenylated flavonols and their potents as estrogen receptor modulator. Scientific Reports, 2017, 7, 12445.	3.3	16
78	Structure, stability and bioaccessibility of icaritin-loaded pectin nanoparticle. Food Hydrocolloids, 2022, 129, 107663.	10.7	16
79	Structure characterization of soybean peptides and their protective activity against intestinal inflammation. Food Chemistry, 2022, 387, 132868.	8.2	16
80	Production of nigragillin and dihydrophaseic acid by biotransformation of litchi pericarp with Aspergillus awamori and their antioxidant activities. Journal of Functional Foods, 2014, 7, 278-286.	3.4	15
81	Immunomodulatory mechanism of α- <scp>d</scp> -(1→6)-glucan isolated from banana. RSC Advances, 2019, 9, 6995-7003.	3.6	15
82	Effect of \hat{l}^3 -irradiation on structure, physicochemical property and bioactivity of soluble dietary fiber in navel orange peel. Food Chemistry: X, 2022, 14, 100274.	4.3	14
83	Icariin as a Preservative to Maintain the Fruit Quality of Banana During Postharvest Storage. Food and Bioprocess Technology, 2019, 12, 1766-1775.	4.7	13
84	Improved Growth of <i>Lactobacillus bulgaricus </i> lncreased Antioxidant Activity by Biotransforming Litchi Pericarp Polysaccharide with <i>Aspergillus awamori </i> li>. BioMed Research International, 2013, 2013, 1-7.	1.9	11
85	Influence of Butylated Hydroxyanisole on the Growth, Hyphal Morphology, and the Biosynthesis of Fumonisins in Fusarium proliferatum. Frontiers in Microbiology, 2016, 7, 1038.	3.5	11
86	Structure Differences of Water Soluble Polysaccharides in Astragalus membranaceus Induced by Origin and Their Bioactivity. Foods, 2021, 10, 1755.	4.3	11
87	Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii. Pesticide Biochemistry and Physiology, 2021, 179, 104976.	3.6	11
88	Effect of lactobacteria fermentation on structure and physicochemical properties of Chinese yam starch (Dioscorea opposita Thunb.). Food Chemistry, 2022, 387, 132873.	8.2	11
89	Morin as a Preservative for Delaying Senescence of Banana. Biomolecules, 2018, 8, 52.	4.0	10
90	Metabolomic analyses of dry lemon slice during storage by NMR. Food Frontiers, 2020, 1, 180-191.	7.4	10

#	Article	IF	Citations
91	Substrate specificity change of a flavonoid prenyltransferase AhPT1 induced by metal ion. International Journal of Biological Macromolecules, 2020, 153, 264-275.	7.5	10
92	Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. Journal of Proteomics, 2016, 148, 1-11.	2.4	9
93	The Plant Resources, Structure Characteristics, Biological Activities and Synthesis of Pyranoflavonoids. Current Medicinal Chemistry, 2016, 23, 3078-3115.	2.4	9
94	Site-selective phenol acylation mediated by thioacids via visible light photoredox catalysis. Organic Chemistry Frontiers, 2018, 5, 1312-1319.	4.5	8
95	Physicochemical properties and microstructure of Chinese yam (Dioscorea opposita Thunb.) flour. Food Hydrocolloids, 2021, 113, 106448.	10.7	8
96	Analysis of Chinese Olive Cultivars Difference by the Structural Characteristics of Oligosaccharides. Food Analytical Methods, 2013, 6, 1529-1536.	2.6	7
97	Valorization of Dacryodes rostrata fruit through the characterization of its oil. Food Chemistry, 2017, 235, 257-264.	8.2	7
98	Transformation of Litchi Pericarp-Derived Condensed Tannin with Aspergillus awamori. International Journal of Molecular Sciences, 2016, 17, 1067.	4.1	6
99	Heterologous biosynthesis of prenylated resveratrol and evaluation of antioxidant activity. Food Chemistry, 2022, 378, 132118.	8.2	6
100	The bioactivity of prenylated stilbenoids and their structure-activity relationship. Food Research International, 2022, 157, 111275.	6.2	6
101	Detection of toxic methylenecyclopropylglycine and hypoglycin A in litchi aril of three Chinese cultivars. Food Chemistry, 2020, 327, 127013.	8.2	5
102	Flavonoid glycosides and other bioactive compounds in Citrus reticulate †Chachi†peel analysed by tandem mass spectrometry and their changes during storage. Carbohydrate Research, 2021, 510, 108462.	2.3	5
103	Naturally occurring prenylated stilbenoids: food sources, biosynthesis, applications and health benefits. Critical Reviews in Food Science and Nutrition, 2023, 63, 8083-8106.	10.3	4
104	Novel strategy to produce prenylated resveratrol by prenyltransferase iacE and evaluation of neuroprotective mechanisms. Biochemical and Biophysical Research Communications, 2022, 609, 127-133.	2.1	2