Haifeng Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5020711/publications.pdf Version: 2024-02-01

HAIFENC YE

#	Article	IF	CITATIONS
1	A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice. Science, 2011, 332, 1565-1568.	12.6	418
2	Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nature Chemical Biology, 2019, 15, 34-41.	8.0	202
3	β-cell–mimetic designer cells provide closed-loop glycemic control. Science, 2016, 354, 1296-1301.	12.6	173
4	Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Science Translational Medicine, 2017, 9, .	12.4	151
5	Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6722-E6730.	7.1	124
6	Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science, 2020, 368, 993-1001.	12.6	117
7	Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 141-146.	7.1	107
8	Self-adjusting synthetic gene circuit for correcting insulin resistance. Nature Biomedical Engineering, 2017, 1, 0005.	22.5	86
9	Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors. Science Advances, 2020, 6, eabb1777.	10.3	73
10	Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Science Advances, 2021, 7, .	10.3	73
11	Synthetic therapeutic gene circuits in mammalian cells. FEBS Letters, 2014, 588, 2537-2544.	2.8	70
12	A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nature Biotechnology, 2022, 40, 262-272.	17.5	57
13	Immunomimetic Designer Cells Protect Mice from MRSA Infection. Cell, 2018, 174, 259-270.e11.	28.9	54
14	A green tea–triggered genetic control system for treating diabetes in mice and monkeys. Science Translational Medicine, 2019, 11, .	12.4	49
15	A synthetic biology-based device prevents liver injury in mice. Journal of Hepatology, 2016, 65, 84-94.	3.7	47
16	A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Molecular Therapy, 2017, 25, 443-455.	8.2	40
17	Synthetic mammalian gene circuits for biomedical applications. Current Opinion in Chemical Biology, 2013, 17, 910-917.	6.1	38
18	A fully human transgene switch to regulate therapeutic protein production by cooling sensation. Nature Medicine, 2019, 25, 1266-1273.	30.7	38

HAIFENG YE

#	Article	IF	CITATIONS
19	Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nature Biomedical Engineering, 2018, 2, 114-123.	22.5	32
20	Patterned Amyloid Materials Integrating Robustness and Genetically Programmable Functionality. Nano Letters, 2019, 19, 8399-8408.	9.1	31
21	A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nature Communications, 2020, 11, 3708.	12.8	31
22	Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034371.	6.2	29
23	Antagonistic control of a dual-input mammalian gene switch by food additives. Nucleic Acids Research, 2014, 42, e116-e116.	14.5	28
24	Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Research, 2015, 43, e91-e91.	14.5	22
25	Recent advances in flexible sweat glucose biosensors. Journal Physics D: Applied Physics, 2021, 54, 423001.	2.8	22
26	A far-red light–inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation. Science Advances, 2021, 7, eabh2358.	10.3	18
27	Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. Science Advances, 2021, 7, .	10.3	17
28	Genetic-code-expanded cell-based therapy for treating diabetes in mice. Nature Chemical Biology, 2022, 18, 47-55.	8.0	17
29	A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nature Communications, 2021, 12, 615.	12.8	16
30	Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
31	A synthetic free fatty acid-regulated transgene switch in mammalian cells and mice. Nucleic Acids Research, 2018, 46, 9864-9874.	14.5	14
32	Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33426-33435.	7.1	14
33	A versatile genetic control system in mammalian cells and mice responsive to clinically licensed sodium ferulate. Science Advances, 2020, 6, eabb9484.	10.3	13
34	Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Molecular Therapy, 2022, 30, 341-354.	8.2	10
35	Engineering Mammalian Designer Cells for the Treatment of Metabolic Diseases. Biotechnology Journal, 2018, 13, e1700160.	3.5	9
36	A Self-Powered Optogenetic System for Implantable Blood Glucose Control. Research, 2022, 2022, .	5.7	7

HAIFENG YE

#	ARTICLE	IF	CITATIONS
37	Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells. Methods in Molecular Biology, 2021, 2312, 125-139.	0.9	2
38	Engineering synthetic optogenetic networks for biomedical applications. Quantitative Biology, 2017, 5, 111-123.	0.5	1
39	Synthetic optogenetic devices for biomedical applications. Scientia Sinica Vitae, 2017, 47, 531-543.	0.3	1
40	Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology. Engineering Biology, 2022, 6, 35-49.	1.8	1
41	Constructing a Smartphone-Controlled Semiautomatic Theranostic System for Glucose Homeostasis in Diabetic Mice. Methods in Molecular Biology, 2021, 2312, 141-158.	0.9	0