
Sebastian J Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5020079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex communityâ€wide consequences of consumer sexual dimorphism. Journal of Animal Ecology, 2022, 91, 958-969.	2.8	4
2	A classification of the dynamics of three-dimensional stochastic ecological systems. Annals of Applied Probability, 2022, 32, .	1.3	12
3	Pathways to the densityâ€dependent expression of cannibalism, and consequences for regulated population dynamics. Ecology, 2022, 103, .	3.2	6
4	Temporally auto-correlated predator attacks structure ecological communities. Biology Letters, 2022, 18, .	2.3	4
5	Positively and Negatively Autocorrelated Environmental Fluctuations Have Opposing Effects on Species Coexistence. American Naturalist, 2021, 197, 405-414.	2.1	17
6	The P^* rule in the stochastic Holt-Lawton model of apparent competition. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 633-644.	0.9	3
7	Effects of size selection versus density dependence on life histories: A first experimental probe. Ecology Letters, 2021, 24, 1467-1473.	6.4	2
8	ls Evolution in Response to Extreme Events Good for Population Persistence?. American Naturalist, 2021, 198, 44-52.	2.1	11
9	Sick of eating: Ecoâ€evoâ€immuno dynamics of predators and their trophically acquired parasites. Evolution; International Journal of Organic Evolution, 2021, 75, 2842-2856.	2.3	2
10	Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evolution, 2021, 7, .	4.9	13
11	Extinction and Quasi-Stationarity for Discrete-Time, Endemic SIS and SIR Models. SIAM Journal on Applied Mathematics, 2021, 81, 2195-2217.	1.8	6
12	Mast seeding promotes evolution of scatter-hoarding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200375.	4.0	7
13	Advancing an interdisciplinary framework to study seed dispersal ecology. AoB PLANTS, 2020, 12, plz048.	2.3	30
14	When do factors promoting genetic diversity also promote population persistence? A demographic perspective on Gillespie's SAS-CFF model. Theoretical Population Biology, 2020, 133, 141-149.	1.1	4
15	Holt (1977) and apparent competition. Theoretical Population Biology, 2020, 133, 17-18.	1.1	3
16	Individual variation in dispersal and fecundity increases rates of spatial spread. AoB PLANTS, 2020, 12, plaa001.	2.3	9
17	Technical Comment on Pande <i>et al</i> . (2020): Why invasion analysis is important for understanding coexistence. Ecology Letters, 2020, 23, 1721-1724.	6.4	17
18	Multiple Attractors and Long Transients in Spatially Structured Populations with an Allee Effect. Bulletin of Mathematical Biology, 2020, 82, 82.	1.9	13

#	Article	IF	CITATIONS
19	Destabilizing evolutionary and eco-evolutionary feedbacks drive empirical eco-evolutionary cycles. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192298.	2.6	16
20	Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182613.	2.6	7
21	Persistence and extinction for stochastic ecological models with internal and external variables. Journal of Mathematical Biology, 2019, 79, 393-431.	1.9	46
22	Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AoB PLANTS, 2019, 11, plz016.	2.3	71
23	When rarity has costs: coexistence under positive frequencyâ€dependence and environmental stochasticity. Ecology, 2019, 100, e02664.	3.2	47
24	The structured demography of open populations in fluctuating environments. Methods in Ecology and Evolution, 2018, 9, 1569-1580.	5.2	6
25	Evolution as a Coexistence Mechanism: Does Genetic Architecture Matter?. American Naturalist, 2018, 191, 407-420.	2.1	24
26	Partitioning the Effects of Eco-Evolutionary Feedbacks on Community Stability. American Naturalist, 2018, 191, 381-394.	2.1	25
27	Evolution in a Community Context: Trait Responses to Multiple Species Interactions. American Naturalist, 2018, 191, 368-380.	2.1	81
28	Robust permanence for ecological equations with internal and external feedbacks. Journal of Mathematical Biology, 2018, 77, 79-105.	1.9	12
29	Restoration of eastern oyster populations with positive density dependence. Ecological Applications, 2018, 28, 897-909.	3.8	17
30	Evolution of natal dispersal in spatially heterogenous environments. Mathematical Biosciences, 2017, 283, 136-144.	1.9	16
31	Robust Permanence for Ecological Maps. SIAM Journal on Mathematical Analysis, 2017, 49, 3527-3549.	1.9	10
32	Coexistence in the Face of Uncertainty. Fields Institute Communications, 2017, , 349-384.	1.3	7
33	A Dynamical Trichotomy for Structured Populations Experiencing Positive Density-Dependence in Stochastic Environments. Springer Proceedings in Mathematics and Statistics, 2017, , 55-66.	0.2	3
34	How variation between individuals affects species coexistence. Ecology Letters, 2016, 19, 825-838.	6.4	242
35	Does an â€~oversupply' of ovules cause pollen limitation?. New Phytologist, 2016, 210, 324-332.	7.3	17
36	The demographic consequences of growing older and bigger in oyster populations. Ecological Applications, 2016, 26, 2206-2217.	3.8	11

#	Article	IF	CITATIONS
37	Modest Pollen Limitation of Lifetime Seed Production Is in Good Agreement with Modest Uncertainty in Whole-Plant Pollen Receipt: (A Reply to Burd). American Naturalist, 2016, 187, 397-404.	2.1	7
38	Individualâ€based integral projection models: the role of sizeâ€structure on extinction risk and establishment success. Methods in Ecology and Evolution, 2016, 7, 867-874.	5.2	5
39	Evolutionarily Driven Shifts in Communities with Intraguild Predation. American Naturalist, 2015, 186, E98-E110.	2.1	33
40	EVOLUTIONARILY INDUCED ALTERNATIVE STATES AND COEXISTENCE IN SYSTEMS WITH APPARENT COMPETITION. Natural Resource Modelling, 2015, 28, 475-496.	2.0	8
41	Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments. Journal of Mathematical Biology, 2015, 71, 325-359.	1.9	52
42	Metapopulation Dynamics on Ephemeral Patches. American Naturalist, 2015, 185, 183-195.	2.1	45
43	Evolutionary and Ecological Consequences of Multiscale Variation in Pollen Receipt for Seed Production. American Naturalist, 2015, 185, E14-E29.	2.1	21
44	Convergence of generalized urn models to non-equilibrium attractors. Stochastic Processes and Their Applications, 2015, 125, 3053-3074.	0.9	1
45	Unifying Within- and Between-Generation Bet-Hedging Theories: An Ode to J. H. Gillespie. American Naturalist, 2015, 186, 792-796.	2.1	21
46	Ocean acidification through the lens of ecological theory. Ecology, 2015, 96, 3-15.	3.2	237
47	Pushed beyond the brink: Allee effects, environmental stochasticity, and extinction. Journal of Biological Dynamics, 2014, 8, 187-205.	1.7	22
48	Persistence in fluctuating environments for interacting structured populations. Journal of Mathematical Biology, 2014, 69, 1267-1317.	1.9	24
49	Parental Optimism versus Parental Pessimism in Plants: How Common Should We Expect Pollen Limitation to Be?. American Naturalist, 2014, 184, 75-90.	2.1	26
50	Quasi-stationary distributions for randomly perturbed dynamical systems. Annals of Applied Probability, 2014, 24, .	1.3	25
51	Stochastic population growth in spatially heterogeneous environments. Journal of Mathematical Biology, 2013, 66, 423-476.	1.9	85
52	Spatial heterogeneity promotes coexistence of rock–paper–scissors metacommunities. Theoretical Population Biology, 2013, 86, 1-11.	1.1	53
53	Multiple scales of selection influence the evolutionary emergence of novel pathogens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120333.	4.0	52
54	The Evolution of Patch Selection in Stochastic Environments. American Naturalist, 2012, 180, 17-34.	2.1	48

#	Article	IF	CITATIONS
55	Temporally variable dispersal and demography can accelerate the spread of invading species. Theoretical Population Biology, 2012, 82, 283-298.	1.1	62
56	Persistence for stochastic difference equations: a mini-review. Journal of Difference Equations and Applications, 2012, 18, 1381-1403.	1.1	62
57	Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Journal of Theoretical Biology, 2012, 297, 26-32.	1.7	52
58	Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution, 2011, 26, 183-192.	8.7	1,809
59	The community effects of phenotypic and genetic variation within a predator population. Ecology, 2011, 92, 1582-1593.	3.2	140
60	Persistence in fluctuating environments. Journal of Mathematical Biology, 2011, 62, 655-683.	1.9	137
61	Invasion speeds for structured populations in fluctuating environments. Theoretical Ecology, 2011, 4, 423-434.	1.0	28
62	Mathematical Dances with Wolves. Science, 2011, 334, 1214-1215.	12.6	1
63	Evolution of unconditional dispersal in periodic environments. Journal of Biological Dynamics, 2011, 5, 120-134.	1.7	7
64	Robust permanence for interacting structured populations. Journal of Differential Equations, 2010, 248, 1955-1971.	2.2	27
65	Preemption of space can lead to intransitive coexistence of competitors. Oikos, 2010, 119, 1201-1209.	2.7	33
66	Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1907-1914.	2.6	71
67	Invasion Dynamics in Spatially Heterogeneous Environments. American Naturalist, 2009, 174, 490-505.	2.1	89
68	Persistence of structured populations in random environments. Theoretical Population Biology, 2009, 76, 19-34.	1.1	60
69	Evolution of Predator and Prey Movement into Sink Habitats. American Naturalist, 2009, 174, 68-81.	2.1	13
70	Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles. Ecology Letters, 2008, 11, 576-587.	6.4	131
71	Importance of Metapopulation Connectivity to Restocking and Restoration of Marine Species. Reviews in Fisheries Science, 2008, 16, 101-110.	2.1	144
72	On persistence and extinction for randomly perturbed dynamical systems. Discrete and Continuous Dynamical Systems - Series B, 2007, 7, 457-463.	0.9	6

#	Article	IF	CITATIONS
73	On the Evolution of Dispersal in Patchy Landscapes. SIAM Journal on Applied Mathematics, 2006, 66, 1366-1382.	1.8	69
74	Dancing between the devil and deep blue sea: the stabilizing effect of enemy-free and victimless sinks. Oikos, 2006, 113, 67-81.	2.7	14
75	Persistence despite perturbations for interacting populations. Journal of Theoretical Biology, 2006, 242, 844-852.	1.7	32
76	On dispersal and population growth for multistate matrix models. Linear Algebra and Its Applications, 2006, 418, 900-912.	0.9	13
77	Host-parasitoid dynamics of a generalized Thompson model. Journal of Mathematical Biology, 2006, 52, 719-732.	1.9	18
78	Handling time promotes the coevolution of aggregation in predator–prey systems. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 185-191.	2.6	25
79	Replacing Sources with Sinks: When Do Populations Go Down the Drain?. Restoration Ecology, 2005, 13, 529-535.	2.9	18
80	Sink habitats can alter ecological outcomes for competing species. Journal of Animal Ecology, 2005, 74, 995-1004.	2.8	15
81	To persist or not to persist?. Nonlinearity, 2004, 17, 1393-1406.	1.4	17
82	From simple rules to cycling in community assembly. Oikos, 2004, 105, 349-358.	2.7	29
83	Coexistence for species sharing a predator. Journal of Differential Equations, 2004, 196, 209-225.	2.2	22
84	On Allee effects in structured populations. Proceedings of the American Mathematical Society, 2004, 132, 3047-3053.	0.8	10
85	Generalized URN models of evolutionary processes. Annals of Applied Probability, 2004, 14, .	1.3	37
86	The evolution of resource use. Journal of Mathematical Biology, 2003, 47, 56-78.	1.9	38
87	Allee effects, extinctions, and chaotic transients in simple population models. Theoretical Population Biology, 2003, 64, 201-209.	1.1	210
88	Kolmogorov Vector Fields with Robustly Permanent Subsystems. Journal of Mathematical Analysis and Applications, 2002, 267, 329-337.	1.0	18
89	Host-limited Dynamics of Autoparasitoids. Journal of Theoretical Biology, 2001, 212, 141-153.	1.7	10
90	Urn Models, Replicator Processes, and Random Genetic Drift. SIAM Journal on Applied Mathematics, 2001, 61, 2148-2167.	1.8	69

6

#	Article	IF	CITATIONS
91	Criteria for Cr Robust Permanence. Journal of Differential Equations, 2000, 162, 400-426.	2.2	81
92	Coevolution of Contrary Choices in Hostâ€Parasitoid Systems. American Naturalist, 2000, 155, 637-648.	2.1	25
93	Generalist and specialist predators that mediate permanence in ecological communities. Journal of Mathematical Biology, 1997, 36, 133-148.	1.9	26