Katharine L Reid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5019844/publications.pdf

Version: 2024-02-01

331670 302126 1,561 47 21 39 h-index citations g-index papers 47 47 47 925 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	PHOTOELECTRON ANGULAR DISTRIBUTIONS. Annual Review of Physical Chemistry, 2003, 54, 397-424.	10.8	400
2	Photoelectron angular distributions: developments in applications to isolated molecular systems. Molecular Physics, 2012, 110, 131-147.	1.7	102
3	Complete description of twoâ \in photon (1+1â \in TM) ionization of NO deduced from rotationally resolved photoelectron angular distributions. Journal of Chemical Physics, 1991, 95, 1757-1767.	3.0	77
4	Complete description of molecular photoionization from circular dichroism of rotationally resolved photoelectron angular distributions. Physical Review Letters, 1992, 68, 3527-3530.	7.8	75
5	Measurement of circular dichroism in rotationally resolved photoelectron angular distributions following the photoionization of NO A 2Σ+. Journal of Chemical Physics, 1992, 97, 4948-4957.	3.0	66
6	Time-resolved photoelectron angular distributions as a probe of intramolecular dynamics: Connecting the molecular frame and the laboratory frame. Journal of Chemical Physics, 2000, 113, 1067-1074.	3.0	62
7	Effect of breaking cylindrical symmetry on photoelectron angular distributions resulting from resonanceâ€enhanced twoâ€photon ionization. Journal of Chemical Physics, 1991, 95, 1746-1756.	3.0	61
8	Picosecond time-resolved photoelectron spectroscopy as a means of gaining insight into mechanisms of intramolecular vibrational energy redistribution in excited states. International Reviews in Physical Chemistry, 2008, 27, 607-628.	2.3	53
9	Photoelectron angular distributions as a probe of alignment evolution in a polyatomic molecule: Picosecond time- and angle-resolved photoelectron spectroscopy of S1 para-difluorobenzene. Journal of Chemical Physics, 1999, 111, 1438-1445.	3.0	51
10	Rotationally Resolved Photoelectron Angular Distributions from a Nonlinear Polyatomic Molecule. Physical Review Letters, 2009, 102, 253002.	7.8	38
11	Modern studies of intramolecular vibrational energy redistribution. Chemical Society Reviews, 1997, 26, 223.	38.1	37
12	Extracting molecular axis alignment from photoelectron angular distributions. Journal of Chemical Physics, 2000, 112, 3643-3649.	3.0	34
13	Critical influences on the rate of intramolecular vibrational redistribution: a comparative study of toluene, toluene-d ₃ and p-fluorotoluene. Physical Chemistry Chemical Physics, 2014, 16, 430-443.	2.8	30
14	The 700-1500 cmâ '1 region of the S1 (Al̂ f 1B2) state of toluene studied with resonance-enhanced multiphoton ionization (REMPI), zero-kinetic-energy (ZEKE) spectroscopy, and time-resolved slow-electron velocity-map imaging (tr-SEVI) spectroscopy. Journal of Chemical Physics, 2014, 140, 114308.	3.0	29
15	Progress in understanding the intramolecular vibrational redistribution dynamics in the S1 state of para-fluorotoluene. Journal of Chemical Physics, 2006, 125, 124308.	3.0	27
16	An unusual π* shape resonance in the near-threshold photoionization of S1 para-difluorobenzene. Journal of Chemical Physics, 2005, 122, 224306.	3.0	26
17	Photoelectron angular distributions from rotationally state-selected NH $<$ sub $>3<$ sub $>(B<$ sup $>1<$ sup $>E$ â \in 2â \in 2 $):$ dependence on ion rotational state and polarization geometry. Molecular Physics, 2010, 108, 1045-1054.	1.7	26
18	Deducing anharmonic coupling matrix elements from picosecond time-resolved photoelectron spectra: application to S1 toluene at low vibrational energy. Physical Chemistry Chemical Physics, 2010, 12, 9872.	2.8	25

#	Article	IF	CITATIONS
19	Photoionization dynamics probed by angle-resolved photoelectron spectroscopy of NH3(BÌ f â \in Š1Eâ \in ³). Journal of Chemical Physics, 2000, 112, 9783-9790.	3.0	24
20	Symmetry considerations in molecular photoionization: Fixed molecule photoelectron angular distributions in C3v molecules as observed in photoelectron–photoion coincidence experiments. Journal of Chemical Physics, 1994, 100, 1066-1074.	3.0	23
21	Intramolecular vibrational dynamics in S1 p-fluorotoluene. I. Direct observation of doorway states. Journal of Chemical Physics, 2011, 135, 124305.	3.0	23
22	Elucidating Quantum Number-Dependent Coupling Matrix Elements Using Picosecond Time-Resolved Photoelectron Spectroscopy. Physical Review Letters, 2012, 109, 193004.	7.8	21
23	Laser Photoelectron Spectroscopy and Dynamics of S1p-Fluorotoluene. Journal of Physical Chemistry A, 2003, 107, 7373-7379.	2.5	20
24	Reevaluation of the Use of Photoelectron Angular Distributions as a Probe of Dynamical Processes: Strong Dependence of Such Distributions from S1Paradifluor obenzene on Photoelectron Kinetic Energy. Physical Review Letters, 2003, 91, 263002.	7.8	19
25	Evaluation of the use of photoelectron imaging in obtaining photoelectron spectra and angular distributions: comparison with the field-free time-of-flight method. Chemical Physics Letters, 2004, 395, 253-258.	2.6	18
26	Observation of a simple vibrational wavepacket in a polyatomic molecule via time-resolved photoelectron velocity-map imaging: A prototype for time-resolved IVR studies. Journal of Chemical Physics, 2006, 124, 201102.	3.0	18
27	Picosecond time-resolved photoelectron spectroscopy as a means of elucidating mechanisms of intramolecular vibrational energy redistribution in electronically excited states of small aromatic molecules. Molecular Physics, 2005, 103, 1821-1827.	1.7	16
28	Applications of slow electron velocity map imaging to the study of spectroscopy and dynamics in small aromatic molecules. Physical Chemistry Chemical Physics, 2008, 10, 6762.	2.8	16
29	Determination of molecular symmetry axis(z) orientation via photoelectron angular distribution measurements. The Journal of Physical Chemistry, 1991, 95, 8154-8158.	2.9	15
30	Complete determination of the photoionization dynamics of a polyatomic molecule. II. Determination of radial dipole matrix elements and phases from experimental photoelectron angular distributions from AlfAu1 acetylene. Journal of Chemical Physics, 2007, 127, 154308.	3.0	15
31	A generic π* shape resonance observed in energy-dependent photoelectron angular distributions from two-colour, resonant multiphoton ionization of difluorobenzene isomers. Journal of Chemical Physics, 2013, 139, 064304.	3.0	14
32	Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies. Journal of Chemical Physics, 2005, 123, 204317.	3.0	13
33	Identifying complex Fermi resonances in p-difluorobenzene using zero-electron-kinetic-energy (ZEKE) spectroscopy. Journal of Chemical Physics, 2018, 149, 094301.	3.0	11
34	Probing the origins of vibrational mode specificity in intramolecular dynamics through picosecond time-resolved photoelectron imaging studies. Physical Chemistry Chemical Physics, 2017, 19, 5051-5062.	2.8	10
35	Complete determination of the photoionization dynamics of a polyatomic molecule. I. Experimental photoelectron angular distributions from ${\rm AlfAu1}$ acetylene. Journal of Chemical Physics, 2007, 127, 154307.	3.0	9
36	Accessing the molecular frame through strong-field alignment of distributions of gas phase molecules. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170158.	3.4	9

#	Article	IF	CITATIONS
37	The role of the intermediate state in angle-resolved photoelectron studies using $(2\hat{a} \in 4 \in 1)$ resonance-enhanced multiphoton ionization of the chiral terpenes, \hat{l} ±-pinene and 3-carene. Molecular Physics, 2021, 119, e1808907.	1.7	9
38	Influence of Vibrational Excitation and Nuclear Dynamics in Multiphoton Photoelectron Circular Dichroism of Fenchone. Journal of Physical Chemistry Letters, 2021, 12, 11438-11443.	4.6	8
39	Complex and Sustained Quantum Beating Patterns in a Classic IVR System: The $3 < \sup 1 < \sup 5 < \sup 1 < \sup $	4.6	6
40	Effect of electronic angular momentum exchange on photoelectron anisotropy following the two-color ionization of krypton atoms. Physical Review A, $2016, 93, .$	2.5	5
41	Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene. Journal of Chemical Physics, 2005, 123, 204316.	3.0	4
42	Photoionization Dynamics of Ammonia (B ¹ E′′): Dependence on Ionizing Photon Energy and Initial Vibrational Level. Journal of Physical Chemistry A, 2010, 114, 11330-11336.	2.5	4
43	Circular dichroism in photoelectron images from aligned nitric oxide molecules. Journal of Chemical Physics, 2017, 147, 013927.	3.0	4
44	Photoelectron angular distributions from resonant two-photon ionisation of adiabatically aligned naphthalene and aniline molecules. Molecular Physics, 2021, 119, e1836411.	1.7	4
45	A Theoretical Study of the Dynamics of Vibrational Wave Packets in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>1</mml:mtext>< State Of Xe₂. Laser Chemistry, 1999, 19, 57-63.</mml:msub></mml:mrow></mml:math>	m nol:₅ ni>g	
46	Comment on "Photoelectron angular distributions as a probe of alignment in a polyatomic molecule: Picosecond time- and angle-resolved photoelectron spectroscopy of S1 p-difluorobenzene―[J. Chem. Phys. 111, 1438 (1999)]. Journal of Chemical Physics, 2013, 139, 117101.	3.0	2
47	Women in physics: A personal view. American Journal of Physics, 1992, 60, 13-13.	0.7	O