
Tadas Malinauskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018753/publications.pdf Version: 2024-02-01

TADAS MALINALISKAS

#	Article	IF	CITATIONS
1	Low ost Dopantâ€Free Carbazole Enamine Holeâ€Transporting Materials for Thermally Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	7
2	Starburst Carbazole Derivatives as Efficient Hole Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100877.	5.8	6
3	Adduct-based p-doping of organic semiconductors. Nature Materials, 2021, 20, 1248-1254.	27.5	40
4	Coâ€Evaporated MAPbI ₃ with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible pâ€iâ€n Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103252.	14.9	40
5	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	6.7	7
6	Oxidized Spiro-OMeTAD: Investigation of Stability in Contact with Various Perovskite Compositions. ACS Applied Energy Materials, 2021, 4, 13696-13705.	5.1	24
7	Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 5017-5023.	4.9	6
8	Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300-1309.	12.6	1,120
9	Triphenylamine-based phenylhydrazone-indolium cationic dyes for solid-state DSSC applications. Materials Letters, 2020, 274, 128001.	2.6	5
10	Focus-Induced Photoresponse Technique-Based NIR Photodetectors Containing Dimeric Polymethine Dyes. Journal of Electronic Materials, 2019, 48, 5843-5849.	2.2	7
11	Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite SolarÂCells. Solar Rrl, 2019, 3, 1900224.	5.8	4
12	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 11388.	2.0	5
13	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 11266-11272.	13.8	37
14	Investigation of photophysical properties of triphenylamine phenylethenyl derivatives containing tertiary amine groups. Dyes and Pigments, 2019, 166, 122-129.	3.7	5
15	Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 2717-2724.	5.5	19
16	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	30.8	519
17	Diphenylamine‣ubstituted Carbazoleâ€Based Hole Transporting Materials for Perovskite Solar Cells: Influence of Isomeric Derivatives. Advanced Functional Materials, 2018, 28, 1704351.	14.9	95
18	Selfâ€Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801892.	19.5	172

TADAS MALINAUSKAS

#	Article	IF	CITATIONS
19	Efficient and Stable Perovskite Solar Cells Using Low ost Anilineâ€Based Enamine Holeâ€Transporting Materials. Advanced Materials, 2018, 30, e1803735.	21.0	68
20	An air-stable and solution processable tetracarboxydiimide-based materials with tunable charge transport properties. Dyes and Pigments, 2018, 158, 157-164.	3.7	4
21	Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. Journal of Materials Chemistry C, 2018, 6, 8874-8878.	5.5	67
22	Longâ€Term Stability of the Oxidized Holeâ€Transporting Materials used in Perovskite Solar Cells. Chemistry - A European Journal, 2018, 24, 9910-9918.	3.3	75
23	Carbazole-based enamine: Low-cost and efficient hole transporting material for perovskite solar cells. Nano Energy, 2017, 32, 551-557.	16.0	97
24	A structural study of Troger's base scaffold-based dyes for DSSC applications. Dyes and Pigments, 2017, 143, 48-61.	3.7	7
25	V-Shaped Hole-Transporting TPD Dimers Containing Tröger's Base Core. Journal of Physical Chemistry C, 2017, 121, 10267-10274.	3.1	6
26	Methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials: role of molecular interaction on device photovoltaic performance. Scientific Reports, 2017, 7, 150.	3.3	22
27	Synthesis and Investigation of the Vâ€shaped Tröger′s Base Derivatives as Holeâ€transporting Materials. Chemistry - an Asian Journal, 2016, 11, 2049-2056.	3.3	9
28	Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells. Energy and Environmental Science, 2016, 9, 1681-1686.	30.8	138
29	Additiveâ€Free Transparent Triarylamineâ€Based Polymeric Holeâ€Transport Materials for Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2567-2571.	6.8	65
30	Molecular engineering of the hole-transporting material spiro-OMeTAD via manipulation of alkyl groups. RSC Advances, 2016, 6, 60587-60594.	3.6	14
31	Efficiency enhancement of perovskite solar cells via incorporation of phenylethenyl side arms into indolocarbazole-based hole transporting materials. Nanoscale, 2016, 8, 8530-8535.	5.6	39
32	Frontispiece: A Methoxydiphenylamineâ€Substituted Carbazole Twin Derivative: An Efficient Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, .	13.8	0
33	A Methoxydiphenylamineâ€Substituted Carbazole Twin Derivative: An Efficient Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 11409-11413.	13.8	239
34	1,3-Diphenylethenylcarbazolyl-Based Monomer for Cross-Linked Hole Transporting Layers. Molecules, 2015, 20, 9124-9138.	3.8	0
35	Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. ACS Applied Materials & Interfaces, 2015, 7, 11107-11116.	8.0	284
36	Investigation of a dendrimer-like arrangement of hydrazone fragments for the application as hole transporting materials. Tetrahedron, 2015, 71, 8162-8171.	1.9	3

TADAS MALINAUSKAS

#	Article	IF	CITATIONS
37	Frontispiz: Methoxydiphenylamin-substituiertes Carbazol-Zwillingsderivat: ein effizienter organischer Lochleiter für Perowskit-Solarzellen. Angewandte Chemie, 2015, 127, n/a-n/a.	2.0	0
38	Relationship between measurement conditions and energy levels in the organic dyes used in dye-sensitized solar cells. RSC Advances, 2015, 5, 82859-82864.	3.6	4
39	A structural study of 1-phenyl-1,2,3,4-tetrahydroquinoline-based dyes for solid-state DSSC applications. Dyes and Pigments, 2014, 104, 211-219.	3.7	18
40	Efficient "Warm-White―OLEDs Based on the Phosphorescent bis-Cyclometalated iridium(III) Complex. Journal of Physical Chemistry C, 2014, 118, 11271-11278.	3.1	73
41	Exciton diffusion enhancement in triphenylamines via incorporation of phenylethenyl sidearms. Journal of Materials Chemistry C, 2014, 2, 4792.	5.5	15
42	Organic Dyes with Hydrazone Moieties: A Study of Correlation between Structure and Performance in the Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 7832-7843.	3.1	16
43	Phenylethenylâ€Substituted Triphenylamines: Efficient, Easily Obtainable, and Inexpensive Holeâ€Transporting Materials. Chemistry - A European Journal, 2013, 19, 15044-15056.	3.3	27
44	Simple and Inexpensive Organic Dyes with Hydrazone Moiety as π onjugation Bridge for Solidâ€State Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 538-541.	3.3	9
45	2-Phenyl-1,2,3-benzotriazole Ir(III) complexes with additional donor fragment for single-layer PhOLED devices. Dyes and Pigments, 2013, 96, 278-286.	3.7	17
46	Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case. Medziagotyra, 2013, 19, .	0.2	0
47	Airâ€Stable, Narrowâ€Bandâ€Gap Ambipolar C ₆₀ Fullerene–Hydrazone Hybrid Materials. Chemistry - an Asian Journal, 2012, 7, 614-620.	3.3	6
48	Synthesis of electroactive hydrazones derived from 3-(10-alkyl-10H-phenothiazin-3-yl)-2-propenals and their corresponding 3,3′-bispropenals. Tetrahedron, 2012, 68, 3552-3559.	1.9	18
49	Synthesis of the hole-transporting molecular glasses possessing pendant 3,6-dibromocarbazolyl moieties. Synthetic Metals, 2011, 161, 1177-1185.	3.9	5
50	One small step in synthesis, a big leap in charge mobility: diphenylethenyl substituted triphenylamines. Chemical Communications, 2011, 47, 7770.	4.1	13
51	Solution processable C60 fullerene-hydrazone dyads for optoelectronics. Carbon, 2011, 49, 320-325.	10.3	12
52	Symmetrical azine-based polymers possessing 1-phenyl-1,2,3,4-tetrahydroquinoline moieties as materials for optoelectronics. Reactive and Functional Polymers, 2011, 71, 1016-1022.	4.1	15
53	Multifunctional red phosphorescent bis-cyclometallated iridium complexes based on 2-phenyl-1,2,3-benzotriazole ligand and carbazolyl moieties. Tetrahedron, 2011, 67, 1852-1861.	1.9	35
54	Easily functionalizable carbazole based building blocks with extended conjugated systems for optoelectronic applications. Tetrahedron, 2010, 66, 3199-3206.	1.9	33

TADAS MALINAUSKAS

#	Article	IF	CITATIONS
55	Study on the influence of methyl groups and their location on properties of triphenylamino-based charge transporting hydrazones. Monatshefte Für Chemie, 2009, 140, 1453-1458.	1.8	3
56	Study of the interaction of salicyl aldehydes with epichlorohydrin: a simple, convenient, and efficient method for the synthesis of 3,6-epoxy[1,5]dioxocines. Tetrahedron, 2009, 65, 8407-8411.	1.9	10
57	Multifunctional emissive material based on 1-phenyl-1,2,3,4-tetrahydroquinoline. Dyes and Pigments, 2009, 81, 131-136.	3.7	9
58	Synthesis of new hole-transporting molecular glasses with pendant carbazolyl-based hydrazone moieties. Synthetic Metals, 2009, 159, 1695-1700.	3.9	7
59	Synthesis and properties of new derivatives of poly[9-(2,3-epoxypropyl)carbazole]. Polymer International, 2008, 57, 1159-1164.	3.1	7
60	Efficient phosphorescent bis-cyclometallated iridium complex based on triazole-quinoline ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 106-110.	3.9	6
61	Novel highly soluble 3,3′-bicarbazolyl based polymers for optoelectronics. European Polymer Journal, 2008, 44, 3620-3627.	5.4	8
62	Influence of the hydroxyl groups on the properties of hydrazone based molecular glasses. Thin Solid Films, 2008, 516, 8979-8983.	1.8	8
63	Synthesis of new hole-transporting molecular glass with pendant carbazolyl moieties. Synthetic Metals, 2008, 158, 670-675.	3.9	11
64	Novel dihydrazone based polymers for electrophotography. European Polymer Journal, 2007, 43, 3597-3603.	5.4	10
65	Synthesis and Photophysical Properties of Ferrocene Containing Monomer and Polymer. Monatshefte FA¼r Chemie, 2007, 138, 277-283.	1.8	4
66	An Efficient Scalable Synthesis of 2,3-Epoxypropyl Phenylhydrazones. Molecules, 2006, 11, 64-71.	3.8	7
67	Novel hydrazone moieties containing polymers for optoelectronics. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 23-27.	3.9	16
68	Hydrazones Possessing a Phenyl-1,2,3,4-tetrahydroquinoline Moiety as Hole Transporting Materials. Monatshefte Für Chemie, 2006, 137, 1401-1409.	1.8	13
69	Novel hydrazone based polymers as hole transporting materials. Polymer, 2005, 46, 7918-7922.	3.8	26
70	Cross-linkable hydrazone-containing molecular glasses for electrophotography. Synthetic Metals, 2005, 155, 599-605.	3.9	19
71	Novel Families of Hole-Transporting Monomers and Polymers. Chemistry Letters, 2004, 33, 1336-1337.	1.3	19

72 Improving n-i-p Perovskite Solar Cells Stability through Transport Layers. , 0, , .

0