Zhiyong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chemical Engineering Journal, 2016, 289, 150-160.	12.7	174
2	Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery. Materials Chemistry and Physics, 2013, 141, 997-1004.	4.0	125
3	Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemometrics and Intelligent Laboratory Systems, 2008, 92, 169-178.	3.5	92
4	Rapid crystallization of poly(l-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer, 2012, 53, 4300-4309.	3.8	92
5	A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine. Journal of Hazardous Materials, 2009, 168, 962-969.	12.4	90
6	Hemocompatibility evaluation of polyurethane film with surfaceâ€grafted poly(ethylene glycol) and carboxymethylâ€chitosan. Journal of Applied Polymer Science, 2013, 127, 308-315.	2.6	66
7	Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites. Journal of Thermal Analysis and Calorimetry, 2014, 115, 209-218.	3.6	65
8	Crystallization behavior and nucleation analysis of poly(<scp>l</scp> ″actic acid) with a multiamide nucleating agent. Polymer Engineering and Science, 2012, 52, 1058-1068.	3.1	61
9	Highly toughened polylactide with epoxidized polybutadiene by in-situ reactive compatibilization. Polymer, 2016, 92, 74-83.	3.8	54
10	Fully biobased thermoplastic elastomers: synthesis and characterization of poly(<scp>l</scp> -lactide)-b-polymyrcene-b-poly(<scp>l</scp> -lactide) triblock copolymers. RSC Advances, 2016, 6, 63508-63514.	3.6	50
11	Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine. Journal of Hazardous Materials, 2009, 164, 1242-1249.	12.4	49
12	Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. Journal of Thermal Analysis and Calorimetry, 2010, 102, 775-783.	3.6	45
13	Miscibility and competition of cocrystallization behavior of poly(hexamethylene dicarboxylate)s aliphatic copolyesters: Effect of chain length of aliphatic diacids. European Polymer Journal, 2017, 92, 71-85.	5.4	41
14	Morphology, crystallization and mechanical properties of poly(É›-caprolactone)/graphene oxide nanocomposites. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1148-1160.	3.8	40
15	Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. Journal of Hazardous Materials, 2008, 157, 510-517.	12.4	39
16	Insight into the annealing peak and microstructural changes of poly(l-lactic acid) by annealing at elevated temperatures. Polymer, 2013, 54, 3377-3384.	3.8	38
17	Fully biobased thermoplastic elastomers: Synthesis of highly branched linear comb poly(β-myrcene)-graft-poly(l-lactide) copolymers with tunable mechanical properties. Polymer, 2018, 138, 57-64.	3.8	38
18	A comparative study of the crystalline structure and mechanical properties of carbon fiber/polyamide 6 composites enhanced with/without silane treatment. RSC Advances, 2016, 6, 107739-107747.	3.6	37

#	Article	IF	CITATIONS
19	Unique isodimorphism and isomorphism behaviors of even-odd poly(hexamethylene dicarboxylate) aliphatic copolyesters. Polymer, 2017, 115, 106-117.	3.8	36
20	Thermo-oxidative ageing effect on mechanical properties and morphology of short fibre reinforced polyamide composites – comparison of carbon and glass fibres. RSC Advances, 2017, 7, 43334-43344.	3.6	35
21	Biobased long-chain aliphatic polyesters of 1,12-dodecanedioic acid with a variety of diols: Odd-even effect and mechanical properties. Materials Today Communications, 2019, 19, 450-458.	1.9	33
22	Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polymer Bulletin, 2013, 70, 2359-2371.	3.3	32
23	Biobased copolyesters from renewable resources: synthesis and crystallization behavior of poly(decamethylene sebacate-co-isosorbide sebacate). RSC Advances, 2015, 5, 42777-42788.	3.6	32
24	Highly toughened polylactide/epoxidized poly(styrene-b-butadiene-b-styrene) blends with excellent tensile performance. European Polymer Journal, 2016, 85, 92-104.	5.4	32
25	Competition and miscibility of isodimorphism and their effects on band spherulites and mechanical properties of poly(butylene succinate-co-cis-butene succinate) unsaturated aliphatic copolyesters. Polymer, 2018, 150, 52-63.	3.8	30
26	Microstructure analysis and thermal properties of l-lactide/É›-caprolactone copolymers obtained with magnesium octoate. Polymer, 2009, 50, 1423-1429.	3.8	29
27	Predicting the gas-liquid critical temperature of binary mixtures based on the quantitative structure property relationship. Chemometrics and Intelligent Laboratory Systems, 2017, 167, 190-195.	3.5	29
28	Crystallization and mechanical properties of basalt fiber-reinforced polypropylene composites with different elastomers. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1531-1543.	3.6	29
29	Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds. Thermochimica Acta, 2017, 655, 112-116.	2.7	28
30	Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials, 2021, 275, 120915.	11.4	28
31	Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2013, 340, 57-60.	2.3	27
32	Facile preparation of stereochemistry-controllable biobased poly(butylene maleate- <i>co</i> butylene) Tj ETQq0 0 functionalization <i>via</i> aza-Michael addition. Polymer Chemistry, 2018, 9, 5426-5441.	0 rgBT /C 3.9	overlock 10 27
33	Isothermal crystallization and mechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites. Journal of Polymer Research, 2012, 19, 1.	2.4	26
34	Temperature-dependent polymorphic crystallization of poly(l-lactide)s on the basis of optical purity and microstructure. Polymer, 2018, 134, 163-174.	3.8	26
35	Copolymerization of ethylene brassylate with Î-valerolactone towards isodimorphic random copolyesters with continuously tunable mechanical properties. European Polymer Journal, 2018, 102, 90-100.	5.4	26
	Effect of chain length of comonomeric diols on competition and miscibility of isodimorphism: A		

comparative study of poly(butylene glutarate-co-butylene azelate) and poly(octylene) Tj ETQq0 0 0 rgBT /Overlock **a**.**4** Tf 50 52/6Td (gluta

#	Article	lF	CITATIONS
37	Synthesis of poly(ε-caprolactone)-poly(L-lactide) block copolymers by melt or solution sequential copolymerization using nontoxic dibutylmagnesium as initiator. Polymer Bulletin, 2008, 61, 407-413.	3.3	25
38	Thermal Hazard of Ionic Liquids: Modeling Thermal Decomposition Temperatures of Imidazolium Ionic Liquids via QSPR Method. Industrial & Engineering Chemistry Research, 2017, 56, 4185-4195.	3.7	25
39	Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polymer Composites, 2015, 36, 1335-1345.	4.6	24
40	Progress in biodegradable zwitterionic materials. Polymer Degradation and Stability, 2017, 139, 1-19.	5.8	24
41	Silane-Treated Basalt Fiber–Reinforced Poly(butylene succinate) Biocomposites: Interfacial Crystallization and Tensile Properties. Polymers, 2017, 9, 351.	4.5	24
42	A Sequential Dualâ€Model Strategy Based on Photoactivatable Metallopolymer for Onâ€Demand Release of Photosensitizers and Anticancer Drugs. Advanced Science, 2021, 8, e2103334.	11.2	24
43	Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1507-1514.	3.6	23
44	A comparative study of TiO ₂ and surfaceâ€treated TiO ₂ nanoparticles on thermal and mechanical properties of poly(εâ€caprolactone) nanocomposites. Journal of Applied Polymer Science, 2012, 125, 3871-3879.	2.6	22
45	Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(εâ€caprolactone) blocks: Synthesis, characterization, and biocompatibility. Journal of Biomedical Materials Research - Part A, 2014, 102, 1121-1130.	4.0	22
46	Fully biobased thermoplastic elastomers: Synthesis of highly branched star comb poly(l²-myrcene)-graft-poly(l-lactide) copolymers with tunable mechanical properties. European Polymer Journal, 2018, 99, 477-484.	5.4	22
47	Poly(hexamethylene succinate) copolyesters containing phosphorus pendent group: Retarded crystallization and solid-state microstructure. Polymer, 2015, 71, 31-42.	3.8	21
48	Boric acid as biocatalyst for living ring-opening polymerization of Îμ -caprolactone. Polymer, 2015, 78, 51-58.	3.8	21
49	Highly branched linear-comb random copolyesters of ε-caprolactone and δ-valerolactone: Isodimorphism, mechanical properties and enzymatic degradation behavior. Polymer Degradation and Stability, 2018, 155, 173-182.	5.8	21
50	Biodegradable PGA/PBAT Blends for 3D Printing: Material Performance and Periodic Minimal Surface Structures. Polymers, 2021, 13, 3757.	4.5	21
51	Facile synthesis and comparative study of poly(<scp>l</scp> -lactide) with linear-comb and star-comb architecture. RSC Advances, 2015, 5, 81482-81491.	3.6	20
52	Synthesis and characterization of homo- and co-polymers of (R,S)-β-butyrolactone and γ-butyrolactone or β-valerolactone initiated with cyclic tin alkoxide. Reactive and Functional Polymers, 2006, 66, 1411-1419.	4.1	19
53	Synthesis of highly branched poly(δ-valerolactone)s: a comparative study between comb and linear analogues. RSC Advances, 2016, 6, 45791-45801.	3.6	19
54	Biobased copolyesters from renewable resources: synthesis and crystallization kinetics of poly(propylene sebacate-co-isosorbide sebacate). RSC Advances, 2015, 5, 68688-68699.	3.6	18

#	Article	IF	CITATIONS
55	Development of zinc salts of amino acids as a new class of biocompatible nucleating agents for poly(l-lactide). European Polymer Journal, 2019, 118, 337-346.	5.4	18
56	High Molecular Weight Unsaturated Copolyesters Derived from Fully Biobased <i>trans</i> -β-Hydromuconic Acid and Fumaric Acid with 1,4-Butanediol: Synthesis and Thermomechanical Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 6859-6869.	6.7	18
57	Synthesis and characterization of poly(εâ€caprolactone)â€ <i>b</i> â€poly(ethylene) Tj ETQq1 1 0.784314 rgBT , Applied Polymer Science, 2009, 111, 429-436.	Overlock 2 2.6	10 Tf 50 66 16
58	Relationships between Architectures and Properties of Highly Branched Polymers: The Cases of Amorphous Poly(trimethylene carbonate) and Crystalline Poly(Îμ-caprolactone). Journal of Physical Chemistry B, 2016, 120, 4078-4090.	2.6	16
59	Facile synthesis of well-defined linear-comb highly branched poly(Îμ-caprolactone) using hydroxylated polybutadiene and organocatalyst. RSC Advances, 2015, 5, 27421-27430.	3.6	15
60	Rheological properties and crystallization behavior of comb-like graft poly(<scp>l</scp> -lactide): influences of graft length and graft density. RSC Advances, 2016, 6, 30320-30329.	3.6	14
61	Insight into the role of bound water of a nucleating agent in polymer nucleation: a comparative study of anhydrous and monohydrated orotic acid on crystallization of poly(<scp> </scp> -lactic acid). RSC Advances, 2017, 7, 27150-27161.	3.6	14
62	Crystallization behavior of poly(ϵ aprolactone)/Tio ₂ nanocomposites obtained by in situ polymerization. Polymer Engineering and Science, 2012, 52, 1047-1057.	3.1	13
63	Copolymerization of <scp>l</scp> -lactide/trimethylene carbonate by organocatalysis: controlled synthesis of comb-like graft copolymers with side chains with different topologies. RSC Advances, 2016, 6, 40371-40382.	3.6	13
64	Synthesis, microstructure and mechanical properties of partially biobased biodegradable poly(ethylene brassylate-co-ε-caprolactone) copolyesters. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 255-265.	3.1	13
65	Synthesis and characterization of biodegradable aliphatic polyesters using dibutylmagnesium as initiator. Chinese Chemical Letters, 2007, 18, 744-746.	9.0	12
66	Kinetics and mechanism of the ring opening polymerization of (R,S)-β-butyrolactone initiated with dibutylmagnesium. European Polymer Journal, 2007, 43, 1210-1218.	5.4	12
67	InÂvitro degradation and biocompatibility evaluation of fully biobased thermoplastic elastomers consisting of poly(β-myrcene) and poly(-lactide) as stent coating. Polymer Degradation and Stability, 2020, 179, 109254.	5.8	11
68	Fully biobased biodegradable poly(<scp>l</scp> â€lactide)â€ <i>b</i> â€poly(ethylene) Tj ETQq0 0 0 rgBT /Overloc relationship between crystallization morphology and thermal properties. Polymer International, 2020, 69, 363-372.	k 10 Tf 50 3.1	232 Td (bra 11
69	Nonisothermal crystallization and melting behavior of poly(εâ€caprolactone)â€ <i>b</i> â€poly(ethylene) Tj ETQc 1133-1140.	1 1 0.784 2.6	314 rgBT /○ 10
70	Nonisothermal crystallization and morphology of poly(butylene succinate)/layered double hydroxide nanocomposites. Chinese Journal of Polymer Science (English Edition), 2013, 31, 187-200.	3.8	10
71	Mechanical properties and nonisothermal crystallization of polyamide 6/carbon fiber composites toughened by maleated elastomers. Polymer Composites, 2014, 35, 2170-2179.	4.6	10
72	Radiopaque iodinated poly(ester-urethane)s based on poly(butylene succinate): Retarded crystallization and dual recrystallization behaviour. Polymer, 2014, 55, 2751-2760.	3.8	10

#	Article	IF	CITATIONS
73	Mechanical properties and crystallization behavior of poly(butylene succinate) composites reinforced with basalt fiber. Journal of Thermal Analysis and Calorimetry, 2015, 122, 261-270.	3.6	10
74	Isodimorphic aliphatic copolyester as midblock of poly(l-lactide)-based triblock copolymers towards largely enhanced impact toughness. European Polymer Journal, 2019, 111, 28-37.	5.4	10
75	ABA triblock copolyesters composed of poly(l-lactide) A hard blocks: A comparative study of amorphous and crystalline aliphatic polyesters as B soft blocks. Polymer Testing, 2020, 83, 106348.	4.8	10
76	The copolymerization of l-lactide and É›-caprolactone using magnesium octoate as a catalyst. Chinese Chemical Letters, 2008, 19, 363-366.	9.0	9
77	Synthesis and crystallization behavior of novel poly(butylene succinate) copolyesters containing phosphorus pendent groups. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1799-1810.	3.6	9
78	Predicting the superheat limit temperature of binary mixtures based on the quantitative structure property relationship. Journal of Loss Prevention in the Process Industries, 2016, 43, 432-437.	3.3	9
79	X-ray visible and doxorubicin-loaded beads based on inherently radiopaque poly(lactic) Tj ETQq1 1 0.784314 rgBT 1389-1398.	/Overlock 7.3	10 Tf 50 5 9
80	<i>Trans</i> -2-Butene-1,4-Diol as an Olefinic Building Block to Prepare Biobased Unsaturated Copolyesters with High Molecular Weight: Synthesis, Characterization, and Physical Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 16699-16708.	6.7	9
81	Biodegradable PBAT/PLA/CaCO ₃ Blowing Films with Enhanced Mechanical and Barrier Properties: Investigation of Size and Content of CaCO ₃ Particles. Macromolecular Materials and Engineering, 2022, 307, .	3.6	9
82	Synthesis and characterization of poly(É›-caprolactone)/Fe3o4 nanocomposites by in situ polymerization. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1011-1021.	3.8	8
83	Synthesis of Star-Comb Double Crystalline Diblock Copolymer of Poly(ε-caprolactone)- <i>block</i> -poly(<scp>l</scp> -lactide): Effect of Chain Topology on Crystallization Behavior. Macromolecular Chemistry and Physics, 2017, 218, 1700178.	2.2	8
84	Development of X-ray opaque poly(lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres. European Polymer Journal, 2018, 108, 337-347.	5.4	8
85	Development of biodegradable polyesters based on a hydroxylated coumarin initiator towards fluorescent visible paclitaxel-loaded microspheres. Journal of Materials Chemistry B, 2019, 7, 2261-2276.	5.8	8
86	A biobased aliphatic polyester derived from 10-hydroxydecanoic acid: Molecular weight dependence of physical properties. Polymer Testing, 2020, 82, 106295.	4.8	8
87	ABA triblock copolyesters composed of poly(l-lactide) A hard blocks: comparison of amorphous and crystalline unsaturated aliphatic polyesters as B soft blocks. Journal of Materials Science, 2020, 55, 9129-9143.	3.7	8
88	Kilogram-Scale Production of Sustainable PCF Copolyesters Based on Novel Cyclic Diol THFDM Derived from 5-Hydroxymethylfurfural: Trade-Off between the THFDM Structure and Various Properties of Copolyesters. ACS Sustainable Chemistry and Engineering, 2021, 9, 13287-13302.	6.7	8
89	Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules, 2022, 23, 1733-1744.	5.4	8
90	Relationship between melting behavior and morphological changes of semicrystalline polymers. Journal of Thermal Analysis and Calorimetry, 2017, 129, 777-787.	3.6	7

#	Article	IF	CITATIONS
91	Experimental measurements and numerical calculation of auto-ignition temperatures for binary miscible liquid mixtures. Chemical Engineering Research and Design, 2018, 113, 22-29.	5.6	7
92	Prediction of the auto-ignition temperature of binary liquid mixtures based on the quantitative structure–property relationship approach. Journal of Thermal Analysis and Calorimetry, 2020, 140, 397-409.	3.6	7
93	In-chain functionalization through the combination of ring opening copolymerization and oxime "Click―reaction towards X-ray opaque polylactide copolymers. Chinese Chemical Letters, 2020, 31, 551-553.	9.0	7
94	Amino acid complexes with tin as a new class of catalysts with high reactivity and low toxicity towards biocompatible aliphatic polyesters. Polymer Journal, 2020, 52, 567-574.	2.7	7
95	Crystallization behavior of isotactic polypropylene/magnesium salt whisker composites modified by compatibilizer PP-g-MAH. Journal of Thermal Analysis and Calorimetry, 2011, 103, 701-710.	3.6	6
96	End-Chain Fluorescent Highly Branched Poly(<scp>l</scp> -lactide)s: Synthesis, Architecture-Dependence, and Fluorescent Visible Paclitaxel-Loaded Microspheres. Biomacromolecules, 2019, 20, 3952-3968.	5.4	6
97	Enzymatic degradation and radiopaque attenuation of iodinated poly(ester-urethane)s with inherent radiopacity. Journal of Materials Science, 2014, 49, 7834-7843.	3.7	5
98	Crystallization Behavior of Semicrystalline Polymers in the Presence of Nucleation Agent. , 2018, , 433-469.		5
99	Hydrolytic Degradation of Comb-Like Graft Poly (Lactide-co-Trimethylene Carbonate): The Role of Comonomer Compositions and Sequences. Polymers, 2019, 11, 2024.	4.5	5
100	Kilogram-scale preparation of sustainable PETG modified with a biobased cyclic diol derived from 5-hydroxymethylfurfural: From synthesis to properties. European Polymer Journal, 2021, 161, 110832.	5.4	5
101	A Strategy of In Situ Catalysis and Nucleation of Biocompatible Zinc Salts of Amino Acids towards Poly(l-lactide) with Enhanced Crystallization Rate. Polymers, 2019, 11, 790.	4.5	4
102	X-ray visible microspheres derived from highly branched biodegradable poly(lactic acid) terminated by triiodobenzoic acid: Preparation and degradation behavior. Polymer Degradation and Stability, 2020, 176, 109149.	5.8	4
103	Ring opening copolymerization of l´-valerolactone with 2-methyl-1,3-dioxane-4-one towards poly(3-hydroxypropionate- <i>co</i> -5-hydroxyvalerate) copolyesters. Polymer Chemistry, 2022, 13, 2132-2142.	3.9	4
104	Biobased unsaturated polyesters containing trans-2-butene-1,4 -diol and various dicarboxylic acids: Synthesis, characterization, and thermo-mechanical properties. Reactive and Functional Polymers, 2021, 169, 105091.	4.1	3
105	Facile preparation and cytocompatibility of poly(lactic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 187 Td (Science, 2014, 54, 2902-2910.	(acid)/poly(3 3.1	â€hydroxybu 2
106	Biobased odd–odd poly(propylene dicarboxylate)s. Journal of Thermal Analysis and Calorimetry, 2020, 140, 199-211.	3.6	2
107	ABA Triblock Copolyesters Composed of Poly(L-lactide) A Hard Blocks: Long Chain Aliphatic Polyesters as B Soft Midblocks. Journal of Polymers and the Environment, 2020, 28, 1420-1430.	5.0	2
108	Inherently radiopaque polyurethane beads as potential multifunctional embolic agent in hepatocellular carcinoma therapy. Journal of Materials Science and Technology, 2021, 63, 106-114.	10.7	2

#	Article	IF	CITATIONS
109	Synthesis and characterization of random styrene–butadiene copolymer with Nd-based catalyst. Polymer Bulletin, 2016, 73, 509-518.	3.3	1
110	Toughening polylactide with epoxidized styrene–butadiene impact resin: Mechanical, morphological, and rheological characterization. Journal of Applied Polymer Science, 2018, 135, 46058.	2.6	1
111	RETARDED CRYSTALLIZATION IN POLY(BUTYLENE SUCCINATE)/POLYHEDRAL OLIGOMERIC SILSESQUIOXANES NANOCOMPOSITES. Acta Polymerica Sinica, 2013, 013, 1253-1261.	0.0	1
112	Cover Image, Volume 69, Issue 4. Polymer International, 2020, 69, i.	3.1	0
113	Linear- and star-brush poly(ethylene glycol)s: Synthesis and architecture-dependent crystallization behavior. Polymer, 2020, 202, 122661.	3.8	0
114	Primary and Secondary Crystallization Kinetic Analysis of Poly(Hexamethylene Succinate). Journal of Advanced Thermal Science Research, 2016, 2, 71-76.	0.4	0