## Jeffrey D Milbrandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018323/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A phytobacterial TIR domain effector manipulates NAD <sup>+</sup> to promote virulence. New Phytologist, 2022, 233, 890-904.                                                       | 3.5 | 47        |
| 2  | From karyotypes to precision genomics in 9p deletion and duplication syndromes. Human Genetics and Genomics Advances, 2022, 3, 100081.                                             | 1.0 | 9         |
| 3  | Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Molecular Neurodegeneration, 2022, 17, 1.                                                | 4.4 | 58        |
| 4  | Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nature Neuroscience,<br>2022, 25, 238-251.                                                         | 7.1 | 35        |
| 5  | Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN. Journal of Cell Biology, 2022, 221, .                                         | 2.3 | 44        |
| 6  | Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules.<br>Molecular Cell, 2022, 82, 1643-1659.e10.                                        | 4.5 | 66        |
| 7  | Products of gut microbial Toll/interleukin-1 receptor domain NADase activities in gnotobiotic mice and Bangladeshi children with malnutrition. Cell Reports, 2022, 39, 110738.     | 2.9 | 13        |
| 8  | Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Reports, 2022, 39, 111001.                                                                  | 2.9 | 34        |
| 9  | Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science, 2022, 377, .                                                                     | 6.0 | 59        |
| 10 | Rapid and Extraction-Free Detection of SARS-CoV-2 from Saliva by Colorimetric Reverse-Transcription Loop-Mediated Isothermal Amplification. Clinical Chemistry, 2021, 67, 415-424. | 1.5 | 192       |
| 11 | Multiple domain interfaces mediate SARM1 autoinhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                             | 3.3 | 54        |
| 12 | Small Molecule SARM1 Inhibitors Recapitulate the SARM1â^'/â^' Phenotype and Allow Recovery of a<br>Metastable Pool of Axons Fated to Degenerate. Cell Reports, 2021, 34, 108588.   | 2.9 | 103       |
| 13 | SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration.<br>Neuron, 2021, 109, 1118-1136.e11.                                            | 3.8 | 168       |
| 14 | SARM1 is required in human derived sensory neurons for injury-induced and neurotoxic axon degeneration. Experimental Neurology, 2021, 339, 113636.                                 | 2.0 | 30        |
| 15 | The SARM1 TIR NADase: Mechanistic Similarities to Bacterial Phage Defense and Toxin-Antitoxin Systems.<br>Frontiers in Immunology, 2021, 12, 752898.                               | 2.2 | 12        |
| 16 | Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection.<br>Experimental Neurology, 2021, 345, 113842.                                          | 2.0 | 24        |
| 17 | Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss. Cell Reports, 2021, 37, 109872.                                                          | 2.9 | 18        |
| 18 | Live imaging reveals the cellular events downstream of SARM1 activation. ELife, 2021, 10, .                                                                                        | 2.8 | 36        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | DLK Activation Synergizes with Mitochondrial Dysfunction to Downregulate Axon Survival Factors<br>and Promote SARM1-Dependent Axon Degeneration. Molecular Neurobiology, 2020, 57, 1146-1158.                                     | 1.9 | 59        |
| 20 | Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy.<br>Glia, 2020, 68, 963-978.                                                                                                   | 2.5 | 33        |
| 21 | High-throughput single-cell functional elucidation of neurodevelopmental disease–associated genes<br>reveals convergent mechanisms altering neuronal differentiation. Genome Research, 2020, 30, 1317-1331.                       | 2.4 | 50        |
| 22 | Domain-centric database to uncover structure of minimally characterized viral genomes. Scientific Data, 2020, 7, 202.                                                                                                             | 2.4 | 2         |
| 23 | cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons. Experimental Neurology, 2020, 329, 113252.                                                                          | 2.0 | 79        |
| 24 | Cell-autonomous expression of the acid hydrolase galactocerebrosidase. Proceedings of the National<br>Academy of Sciences of the United States of America, 2020, 117, 9032-9041.                                                  | 3.3 | 8         |
| 25 | Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nature Communications, 2020, 11, 2552.                                                                               | 5.8 | 84        |
| 26 | SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. Journal of Cell Biology, 2020, 219, .                                                                                           | 2.3 | 99        |
| 27 | SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration. ELife, 2020, 9, .                                                                                                                     | 2.8 | 56        |
| 28 | TIR domains of plant immune receptors are NAD <sup>+</sup> -cleaving enzymes that promote cell death. Science, 2019, 365, 799-803.                                                                                                | 6.0 | 337       |
| 29 | Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. Journal of Experimental<br>Medicine, 2019, 216, 294-303.                                                                                              | 4.2 | 107       |
| 30 | Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight, 2019, 4, .                                                                               | 2.3 | 100       |
| 31 | TIR Domain Proteins Are an Ancient Family of NAD+-Consuming Enzymes. Current Biology, 2018, 28, 421-430.e4.                                                                                                                       | 1.8 | 217       |
| 32 | Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional<br>Deletion of <i>Ctcf</i> in <i>Camk2a-Cre</i> Expressing Neurons. Journal of Neuroscience, 2018, 38,<br>200-219.               | 1.7 | 55        |
| 33 | HSP90 is a chaperone for DLK and is required for axon injury signaling. Proceedings of the National<br>Academy of Sciences of the United States of America, 2018, 115, E9899-E9908.                                               | 3.3 | 30        |
| 34 | Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia. Cell Reports, 2018, 24, 3619-3629.e4.                                                                                                         | 2.9 | 109       |
| 35 | Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proceedings of the<br>National Academy of Sciences of the United States of America, 2018, 115, E8746-E8754.                                          | 3.3 | 59        |
| 36 | Schwann cell O-GlcNAcylation promotes peripheral nerve remyelination via attenuation of the AP-1 transcription factor JUN. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8019-8024. | 3.3 | 32        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dysregulation of NAD <sup>+</sup> Metabolism Induces a Schwann Cell Dedifferentiation Program.<br>Journal of Neuroscience, 2018, 38, 6546-6562.                                                                                      | 1.7 | 36        |
| 38 | mTORC1 promotes proliferation of immature Schwann cells and myelin growth of differentiated<br>Schwann cells. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, E4261-E4270.            | 3.3 | 50        |
| 39 | The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD + Cleavage Activity that<br>Promotes Pathological Axonal Degeneration. Neuron, 2017, 93, 1334-1343.e5.                                                          | 3.8 | 446       |
| 40 | NMNAT3 is protective against the effects of neonatal cerebral hypoxiaâ€ischemia. Annals of Clinical and<br>Translational Neurology, 2017, 4, 722-738.                                                                                | 1.7 | 12        |
| 41 | MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. ELife, 2017, 6, .                                                                                                      | 2.8 | 123       |
| 42 | NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion. ELife, 2016, 5, .                                                                                                                                   | 2.8 | 159       |
| 43 | An NAD <sup>+</sup> -dependent transcriptional program governs self-renewal and radiation<br>resistance in glioblastoma. Proceedings of the National Academy of Sciences of the United States of<br>America, 2016, 113, E8247-E8256. | 3.3 | 101       |
| 44 | ls Axonal Degeneration a Key Early Event in Parkinson's Disease?. Journal of Parkinson's Disease, 2016, 6,<br>703-707.                                                                                                               | 1.5 | 36        |
| 45 | TMEM184b Promotes Axon Degeneration and Neuromuscular Junction Maintenance. Journal of Neuroscience, 2016, 36, 4681-4689.                                                                                                            | 1.7 | 27        |
| 46 | SARM1-specific motifs in the TIR domain enable NAD <sup>+</sup> loss and regulate injury-induced SARM1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6271-E6280.          | 3.3 | 115       |
| 47 | Nmnat1 protects neuronal function without altering phosphoâ€ŧau pathology in a mouse model of<br>tauopathy. Annals of Clinical and Translational Neurology, 2016, 3, 434-442.                                                        | 1.7 | 23        |
| 48 | Schwann Cell O-GlcNAc Glycosylation Is Required for Myelin Maintenance and Axon Integrity. Journal of Neuroscience, 2016, 36, 9633-9646.                                                                                             | 1.7 | 48        |
| 49 | Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain, 2016, 139, 3092-3108.                                                                                                           | 3.7 | 217       |
| 50 | Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism. Neuron, 2016, 89, 449-460.                                                                                                                                 | 3.8 | 277       |
| 51 | Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide. PLoS ONE, 2016, 11, e0159675.                                                               | 1.1 | 31        |
| 52 | Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain<br>development. Proceedings of the National Academy of Sciences of the United States of America, 2015,<br>112, 14105-14112.              | 3.3 | 114       |
| 53 | Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders.<br>Genome Research, 2015, 25, 948-957.                                                                                                 | 2.4 | 54        |
| 54 | SARM1 activation triggers axon degeneration locally via NAD <sup>+</sup> destruction. Science, 2015, 348, 453-457.                                                                                                                   | 6.0 | 452       |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characterization of Leber Congenital Amaurosis-associated NMNAT1 Mutants. Journal of Biological<br>Chemistry, 2015, 290, 17228-17238.                                                  | 1.6 | 33        |
| 56 | Validation of a Next-Generation Sequencing Assay for Clinical Molecular Oncology. Journal of Molecular Diagnostics, 2014, 16, 89-105.                                                  | 1.2 | 168       |
| 57 | Mitochondrial Dysfunction Induces Sarm1-Dependent Cell Death in Sensory Neurons. Journal of Neuroscience, 2014, 34, 9338-9350.                                                         | 1.7 | 148       |
| 58 | Metabolic regulator LKB1 is crucial for Schwann cell–mediated axon maintenance. Nature<br>Neuroscience, 2014, 17, 1351-1361.                                                           | 7.1 | 163       |
| 59 | An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury. BMC Genomics, 2013, 14, 84. | 1.2 | 35        |
| 60 | Sarm1-Mediated Axon Degeneration Requires Both SAM and TIR Interactions. Journal of Neuroscience, 2013, 33, 13569-13580.                                                               | 1.7 | 302       |
| 61 | Role of oxygen consumption in hypoxia protection by translation factor depletion. Journal of Experimental Biology, 2013, 216, 2283-92.                                                 | 0.8 | 15        |
| 62 | Protection of Mouse Retinal Ganglion Cell Axons and Soma from Glaucomatous and Ischemic Injury by<br>Cytoplasmic Overexpression of Nmnat1. , 2013, 54, 25.                             |     | 56        |
| 63 | The Phr1ÂUbiquitin Ligase Promotes Injury-Induced Axon Self-Destruction. Cell Reports, 2013, 3, 1422-1429.                                                                             | 2.9 | 140       |
| 64 | Aberrant Schwann Cell Lipid Metabolism Linked to Mitochondrial Deficits Leads to Axon Degeneration and Neuropathy. Neuron, 2013, 77, 886-898.                                          | 3.8 | 207       |
| 65 | Differential RET Signaling Pathways Drive Development of the Enteric Lymphoid and Nervous Systems.<br>Science Signaling, 2012, 5, ra55.                                                | 1.6 | 59        |
| 66 | The AMPK β2 Subunit Is Required for Energy Homeostasis during Metabolic Stress. Molecular and Cellular Biology, 2012, 32, 2837-2848.                                                   | 1.1 | 61        |
| 67 | A Model of Toxic Neuropathy in <i>Drosophila</i> Reveals a Role for MORN4 in Promoting Axonal Degeneration. Journal of Neuroscience, 2012, 32, 5054-5061.                              | 1.7 | 66        |
| 68 | SCG10 is a JNK target in the axonal degeneration pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3696-705.                       | 3.3 | 152       |
| 69 | Mitofusin2 Mutations Disrupt Axonal Mitochondrial Positioning and Promote Axon Degeneration.<br>Journal of Neuroscience, 2012, 32, 4145-4155.                                          | 1.7 | 164       |
| 70 | Assembly and Maintenance of Nodes of Ranvier Rely on Distinct Sources of Proteins and Targeting<br>Mechanisms. Neuron, 2012, 73, 92-107.                                               | 3.8 | 89        |
| 71 | Dual Leucine Zipper Kinase Is Required for Retrograde Injury Signaling and Axonal Regeneration.<br>Neuron, 2012, 74, 1015-1022.                                                        | 3.8 | 277       |
| 72 | MicroRNAs Modulate Schwann Cell Response to Nerve Injury by Reinforcing Transcriptional Silencing of Dedifferentiation-Related Genes. Journal of Neuroscience, 2011, 31, 17358-17369.  | 1.7 | 126       |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Schwann Cell Mitochondrial Metabolism Supports Long-Term Axonal Survival and Peripheral Nerve<br>Function. Journal of Neuroscience, 2011, 31, 10128-10140.                                                                                                                  | 1.7 | 153       |
| 74 | Image-based Screening Identifies Novel Roles for IκB Kinase and Glycogen Synthase Kinase 3 in Axonal<br>Degeneration. Journal of Biological Chemistry, 2011, 286, 28011-28018.                                                                                              | 1.6 | 61        |
| 75 | Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E952-61.                                  | 3.3 | 142       |
| 76 | Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in<br>developing CNS by inhibiting excitotoxic-necrotic cell death. Proceedings of the National Academy of<br>Sciences of the United States of America, 2011, 108, 19054-19059. | 3.3 | 52        |
| 77 | Differential Regional and Subtype-Specific Vulnerability of Enteric Neurons to Mitochondrial Dysfunction. PLoS ONE, 2011, 6, e27727.                                                                                                                                        | 1.1 | 25        |
| 78 | Mechanisms of nucleotide trafficking during siRNA delivery to endothelial cells using perfluorocarbon nanoemulsions. Biomaterials, 2010, 31, 3079-3086.                                                                                                                     | 5.7 | 50        |
| 79 | Amyloid Precursor Protein Cleavage-Dependent and -Independent Axonal Degeneration Programs<br>Share a Common Nicotinamide Mononucleotide Adenylyltransferase 1-Sensitive Pathway. Journal of<br>Neuroscience, 2010, 30, 13729-13738.                                        | 1.7 | 92        |
| 80 | RET Signaling Is Required for Survival and Normal Function of Nonpeptidergic Nociceptors. Journal of Neuroscience, 2010, 30, 3983-3994.                                                                                                                                     | 1.7 | 80        |
| 81 | Mitofusin 2 Is Necessary for Transport of Axonal Mitochondria and Interacts with the Miro/Milton<br>Complex. Journal of Neuroscience, 2010, 30, 4232-4240.                                                                                                                  | 1.7 | 533       |
| 82 | Axonal Degeneration Is Blocked by Nicotinamide Mononucleotide Adenylyltransferase (Nmnat) Protein<br>Transduction into Transected Axons. Journal of Biological Chemistry, 2010, 285, 41211-41215.                                                                           | 1.6 | 60        |
| 83 | Persephin signaling through GFRα1: The potential for the treatment of Parkinson's disease. Molecular<br>and Cellular Neurosciences, 2010, 44, 223-232.                                                                                                                      | 1.0 | 30        |
| 84 | Nicotinamide adenine dinucleotide (NAD)–regulated DNA methylation alters CCCTC-binding factor<br>(CTCF)/cohesin binding and transcription at the BDNF locus. Proceedings of the National Academy of<br>Sciences of the United States of America, 2010, 107, 21836-21841.    | 3.3 | 58        |
| 85 | Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. Journal of Clinical Investigation, 2010, 120, 778-790.                                                                                  | 3.9 | 50        |
| 86 | Nicotinamide Mononucleotide Adenylyl Transferase-Mediated Axonal Protection Requires Enzymatic<br>Activity But Not Increased Levels of Neuronal Nicotinamide Adenine Dinucleotide. Journal of<br>Neuroscience, 2009, 29, 5525-5535.                                         | 1.7 | 224       |
| 87 | Congenital Hypomyelinating Neuropathy with Lethal Conduction Failure in Mice Carrying the Egr2<br>I268N Mutation. Journal of Neuroscience, 2009, 29, 2312-2321.                                                                                                             | 1.7 | 40        |
| 88 | The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons. Journal of Cell Science, 2009, 122, 2274-2282.                                                                                                                                                    | 1.2 | 63        |
| 89 | Transgenic Mice Expressing the Nmnat1 Protein Manifest Robust Delay in Axonal Degeneration <i>In<br/>Vivo</i> . Journal of Neuroscience, 2009, 29, 6526-6534.                                                                                                               | 1.7 | 146       |
| 90 | Regionalized Loss of Parvalbumin Interneurons in the Cerebral Cortex of Mice with Deficits in GFRα1<br>Signaling. Journal of Neuroscience, 2009, 29, 10695-10705.                                                                                                           | 1.7 | 57        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A dual leucine kinase–dependent axon self-destruction program promotes Wallerian degeneration.<br>Nature Neuroscience, 2009, 12, 387-389.                                                                        | 7.1 | 269       |
| 92  | The purine nucleosides adenosine and guanosine delay axonal degeneration <i>in vitro</i> . Journal of Neurochemistry, 2009, 109, 595-602.                                                                        | 2.1 | 5         |
| 93  | AMP-Activated Protein Kinase Phosphorylates Retinoblastoma Protein to Control Mammalian Brain<br>Development. Developmental Cell, 2009, 16, 256-270.                                                             | 3.1 | 130       |
| 94  | Molecular Identification of Rapidly Adapting Mechanoreceptors and Their Developmental Dependence on Ret Signaling. Neuron, 2009, 64, 841-856.                                                                    | 3.8 | 200       |
| 95  | Dosage Effects of Cohesin Regulatory Factor PDS5 on Mammalian Development: Implications for Cohesinopathies. PLoS ONE, 2009, 4, e5232.                                                                           | 1.1 | 74        |
| 96  | The Transcriptional Cofactor Nab2 Is Induced by TGF-β and Suppresses Fibroblast Activation: Physiological Roles and Impaired Expression in Scleroderma. PLoS ONE, 2009, 4, e7620.                                | 1.1 | 23        |
| 97  | NS21: Re-defined and modified supplement B27 for neuronal cultures. Journal of Neuroscience Methods, 2008, 171, 239-247.                                                                                         | 1.3 | 258       |
| 98  | Nmnat Delays Axonal Degeneration Caused by Mitochondrial and Oxidative Stress. Journal of Neuroscience, 2008, 28, 4861-4871.                                                                                     | 1.7 | 143       |
| 99  | Analysis of Peripheral Nerve Expression Profiles Identifies a Novel Myelin Glycoprotein, MP11. Journal of Neuroscience, 2008, 28, 7563-7573.                                                                     | 1.7 | 22        |
| 100 | Neurturin-Mediated Ret Activation Is Required for Retinal Function. Journal of Neuroscience, 2008, 28, 4123-4135.                                                                                                | 1.7 | 28        |
| 101 | Mice Lacking the Immediate Early Gene Egr3 Respond to the Anti-Aggressive Effects of Clozapine Yet are Relatively Resistant to its Sedating Effects. Neuropsychopharmacology, 2008, 33, 1266-1275.               | 2.8 | 56        |
| 102 | Axonal protection by Nmnat expression. FASEB Journal, 2008, 22, 408.3.                                                                                                                                           | 0.2 | 0         |
| 103 | Conditional ablation of GFRα1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung's disease phenotype. Development (Cambridge), 2007, 134, 2171-2181. | 1.2 | 112       |
| 104 | Contribution of the orphan nuclear receptor Nur77 to the apoptotic action of IGFBP-3.<br>Carcinogenesis, 2007, 28, 1653-1658.                                                                                    | 1.3 | 41        |
| 105 | Familial Parkinsonism and Ophthalmoplegia From a Mutation in the Mitochondrial DNA Helicase<br>Twinkle. Archives of Neurology, 2007, 64, 998.                                                                    | 4.9 | 91        |
| 106 | Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities<br>reminiscent of Cornelia de Lange syndrome. Development (Cambridge), 2007, 134, 3191-3201.                            | 1.2 | 94        |
| 107 | Resveratrol stimulates AMP kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7217-7222.                                                    | 3.3 | 675       |
| 108 | Misexpression of Pou3f1 Results in Peripheral Nerve Hypomyelination and Axonal Loss. Journal of Neuroscience, 2007, 27, 11552-11559.                                                                             | 1.7 | 58        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Nampt/PBEF/Visfatin Regulates Insulin Secretion in β Cells as a Systemic NAD Biosynthetic Enzyme. Cell<br>Metabolism, 2007, 6, 363-375.                                                                                                         | 7.2  | 785       |
| 110 | Altered Axonal Mitochondrial Transport in the Pathogenesis of Charcot-Marie-Tooth Disease from<br>Mitofusin 2 Mutations. Journal of Neuroscience, 2007, 27, 422-430.                                                                            | 1.7  | 397       |
| 111 | Abrogation of nuclear receptors Nr4a3 andNr4a1 leads to development of acute myeloid leukemia.<br>Nature Medicine, 2007, 13, 730-735.                                                                                                           | 15.2 | 275       |
| 112 | NGF augments the autophosphorylation of Ret via inhibition of ubiquitin-dependent degradation.<br>Journal of Neurochemistry, 2007, 100, 1169-1176.                                                                                              | 2.1  | 14        |
| 113 | Deciphering adaptor specificity in GFL-dependent RET-mediated proliferation and neurite outgrowth.<br>Journal of Neurochemistry, 2007, 102, 1184-1194.                                                                                          | 2.1  | 9         |
| 114 | The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nature Neuroscience,<br>2006, 9, 76-84.                                                                                                                          | 7.1  | 88        |
| 115 | Structure of Artemin Complexed with Its Receptor GFRα3: Convergent Recognition of Glial Cell Line-Derived Neurotrophic Factors. Structure, 2006, 14, 1083-1092.                                                                                 | 1.6  | 65        |
| 116 | An Egr-1 master switch for arteriogenesis: Studies in Egr-1 homozygous negative and wild-type animals.<br>Journal of Thoracic and Cardiovascular Surgery, 2006, 131, 138-145.                                                                   | 0.4  | 23        |
| 117 | Direct, Androgen Receptor-Mediated Regulation of the FKBP5 Gene via a Distal Enhancer Element.<br>Endocrinology, 2006, 147, 590-598.                                                                                                            | 1.4  | 151       |
| 118 | Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes and Development, 2006, 20, 321-333.                                                                                                                  | 2.7  | 137       |
| 119 | RET Is Dispensable for Maintenance of Midbrain Dopaminergic Neurons in Adult Mice. Journal of Neuroscience, 2006, 26, 11230-11238.                                                                                                              | 1.7  | 88        |
| 120 | Stimulation of Nicotinamide Adenine Dinucleotide Biosynthetic Pathways Delays Axonal Degeneration after Axotomy. Journal of Neuroscience, 2006, 26, 8484-8491.                                                                                  | 1.7  | 248       |
| 121 | Glial Cell-Line Derived Neurotrophic Factor-Mediated RET Signaling Regulates Spermatogonial Stem<br>Cell Fate1. Biology of Reproduction, 2006, 74, 314-321.                                                                                     | 1.2  | 347       |
| 122 | Glial Cell Line-Derived Neurotrophic Factor-Dependent Recruitment of Ret into Lipid Rafts Enhances<br>Signaling by Partitioning Ret from Proteasome-Dependent Degradation. Journal of Neuroscience, 2006,<br>26, 2777-2787.                     | 1.7  | 85        |
| 123 | A systematic model to predict transcriptional regulatory mechanisms based on overrepresentation of transcription factor binding profiles. Genome Research, 2006, 16, 405-413.                                                                   | 2.4  | 65        |
| 124 | Nab proteins are essential for peripheral nervous system myelination. Nature Neuroscience, 2005, 8, 932-940.                                                                                                                                    | 7.1  | 118       |
| 125 | Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2596-2601. | 3.3  | 264       |
| 126 | Expression and function of GDNF family ligands and receptors in the carotid body. Experimental Neurology, 2005, 191, S68-S79.                                                                                                                   | 2.0  | 24        |

| #   | Article                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A Human Yeast Artificial Chromosome Containing the Multiple Endocrine Neoplasia Type 2B Ret<br>Mutation Does Not Induce Medullary Thyroid Carcinoma but Does Support the Growth of Kidneys and<br>Partially Rescues Enteric Nervous System Development in Ret-Deficient Mice. American Journal of<br>Pathology, 2005, 166, 265-274. | 1.9 | 8         |
| 128 | Selective contribution of Egr1 (zif/268) to persistent inflammatory pain. Journal of Pain, 2005, 6, 12-20.                                                                                                                                                                                                                          | 0.7 | 52        |
| 129 | A Transcription Factor for Cold Sensation!. Molecular Pain, 2005, 1, 1744-8069-1-11.                                                                                                                                                                                                                                                | 1.0 | 3         |
| 130 | Increased Nuclear NAD Biosynthesis and SIRT1 Activation Prevent Axonal Degeneration. Science, 2004, 305, 1010-1013.                                                                                                                                                                                                                 | 6.0 | 982       |
| 131 | Early Growth Response Gene 1–mediated Apoptosis Is Essential for Transforming Growth Factor<br>β1–induced Pulmonary Fibrosis. Journal of Experimental Medicine, 2004, 200, 377-389.                                                                                                                                                 | 4.2 | 339       |
| 132 | Dok-6, a Novel p62 Dok Family Member, Promotes Ret-mediated Neurite Outgrowth. Journal of<br>Biological Chemistry, 2004, 279, 42072-42081.                                                                                                                                                                                          | 1.6 | 92        |
| 133 | Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development (Cambridge), 2004, 131, 5503-5513.                                                                                                                                         | 1.2 | 112       |
| 134 | Expression Profiles Provide Insights into Early Malignant Potential and Skeletal Abnormalities in<br>Multiple Endocrine Neoplasia Type 2B Syndrome Tumors. Cancer Research, 2004, 64, 3907-3913.                                                                                                                                    | 0.4 | 66        |
| 135 | Tyrosine 981, a Novel Ret Autophosphorylation Site, Binds c-Src to Mediate Neuronal Survival. Journal of Biological Chemistry, 2004, 279, 18262-18269.                                                                                                                                                                              | 1.6 | 81        |
| 136 | Homozygous deletion of early growth response 1 gene and critical limb ischemia after vascular<br>ligation in mice: Evidence for a central role in vascular homeostasis. Journal of Thoracic and<br>Cardiovascular Surgery, 2004, 128, 595-601.                                                                                      | 0.4 | 17        |
| 137 | Neural cells in the esophagus respond to glial cell line-derived neurotrophic factor and neurturin, and are RET-dependent. Developmental Biology, 2004, 272, 118-118.                                                                                                                                                               | 0.9 | 0         |
| 138 | Neural cells in the esophagus respond to glial cell line-derived neurotrophic factor and neurturin, and are RET-dependent. Developmental Biology, 2004, 272, 118-133.                                                                                                                                                               | 0.9 | 52        |
| 139 | GFRα1 Expression in Cells Lacking RET Is Dispensable for Organogenesis and Nerve Regeneration.<br>Neuron, 2004, 44, 623-636.                                                                                                                                                                                                        | 3.8 | 67        |
| 140 | Haploinsufficiency at the Nkx3.1 locus. Cancer Cell, 2003, 3, 273-283.                                                                                                                                                                                                                                                              | 7.7 | 133       |
| 141 | Drosophila NAB (dNAB) is an orphan transcriptional co-repressor required for correct CNS and eye development. Developmental Dynamics, 2003, 226, 67-81.                                                                                                                                                                             | 0.8 | 17        |
| 142 | Neurturin and persephin promote the survival of embryonic basal forebrain cholinergic neurons in vitro. Experimental Neurology, 2003, 184, 447-455.                                                                                                                                                                                 | 2.0 | 21        |
| 143 | A pilot study of high-throughput, sequence-based mutational profiling of primary human acute<br>myeloid leukemia cell genomes. Proceedings of the National Academy of Sciences of the United States<br>of America, 2003, 100, 14275-14280.                                                                                          | 3.3 | 55        |
| 144 | ZNRF Proteins Constitute a Family of Presynaptic E3 Ubiquitin Ligases. Journal of Neuroscience, 2003, 23, 9385-9394.                                                                                                                                                                                                                | 1.7 | 60        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Neurturin-Deficient Mice Develop Dry Eye and Keratoconjunctivitis Sicca. , 2003, 44, 4223.                                                                                                                                   |     | 105       |
| 146 | FOXO Proteins Regulate Tumor Necrosis Factor-related Apoptosis Inducing Ligand Expression. Journal of Biological Chemistry, 2002, 277, 47928-47937.                                                                          | 1.6 | 329       |
| 147 | Thymocyte Development in Early Growth Response Gene 1-Deficient Mice. Journal of Immunology, 2002, 169, 1713-1720.                                                                                                           | 0.4 | 89        |
| 148 | Deciphering peripheral nerve myelination by using Schwann cell expression profiling. Proceedings of the United States of America, 2002, 99, 8998-9003.                                                                       | 3.3 | 122       |
| 149 | The Long and Short Isoforms of Ret Function as Independent Signaling Complexes. Journal of Biological Chemistry, 2002, 277, 34618-34625.                                                                                     | 1.6 | 93        |
| 150 | Conditional Loss of Nkx3.1 in Adult Mice Induces Prostatic Intraepithelial Neoplasia. Molecular and<br>Cellular Biology, 2002, 22, 1495-1503.                                                                                | 1.1 | 220       |
| 151 | NGF Utilizes c-Ret Via a Novel GFL-Independent, Inter-RTK Signaling Mechanism to Maintain the Trophic<br>Status of Mature Sympathetic Neurons. Neuron, 2002, 33, 261-273.                                                    | 3.8 | 103       |
| 152 | Artemin Is a Vascular-Derived Neurotropic Factor for Developing Sympathetic Neurons. Neuron, 2002, 35, 267-282.                                                                                                              | 3.8 | 294       |
| 153 | Lipid rafts in neuronal signaling and function. Trends in Neurosciences, 2002, 25, 412-417.                                                                                                                                  | 4.2 | 354       |
| 154 | Glial Cell Line-Derived Neurotrophic Factor Promotes the Survival of Early Postnatal Spinal Motor<br>Neurons in the Lateral and Medial Motor Columns in Slice Culture. Journal of Neuroscience, 2002, 22,<br>3953-3962.      | 1.7 | 54        |
| 155 | In Vitro and In Vivo Characterization of a Dual-Function Green Fluorescent Protein–HSV1-Thymidine<br>Kinase Reporter Gene Driven by the Human Elongation Factor 1α Promoter. Molecular Imaging, 2002, 1,<br>153535002002011. | 0.7 | 2         |
| 156 | Induction of a Nerve Growth Factor-Sensitive Kinase that Phosphorylates the DNA-Binding Domain of the Orphan Nuclear Receptor NGFI-B. Journal of Neurochemistry, 2002, 65, 1780-1788.                                        | 2.1 | 16        |
| 157 | In Vitro and In Vivo Characterization of a Dual-Function Green Fluorescent Protein-HSV1-Thymidine<br>Kinase Reporter Gene Driven by the Human Elongation Factor 11± Promoter. Molecular Imaging, 2002, 1,<br>65-73.          | 0.7 | 21        |
| 158 | The Transcriptional Corepressor NAB2 Blocks Egr-1-Mediated Growth Factor Activation and Angiogenesis. Biochemical and Biophysical Research Communications, 2001, 283, 480-486.                                               | 1.0 | 51        |
| 159 | The Transcription Factor Egr3 Modulates Sensory Axon–Myotube Interactions during Muscle Spindle<br>Morphogenesis. Developmental Biology, 2001, 232, 388-399.                                                                 | 0.9 | 76        |
| 160 | Frequent and early loss of the EGR1 corepressor NAB2 in human prostate carcinoma. Human<br>Pathology, 2001, 32, 935-939.                                                                                                     | 1.1 | 60        |
| 161 | EGR2 Mutations in Inherited Neuropathies Dominant-Negatively Inhibit Myelin Gene Expression.<br>Neuron, 2001, 30, 355-368.                                                                                                   | 3.8 | 242       |
| 162 | Quantitative Amplification of Genomic DNA from Histological Tissue Sections after Staining with Nuclear Dyes and Laser Capture Microdissection. Journal of Molecular Diagnostics, 2001, 3, 22-25.                            | 1.2 | 64        |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Impaired prostate tumorigenesis in Egr1-deficient mice. Nature Medicine, 2001, 7, 101-107.                                                                                                                                              | 15.2 | 153       |
| 164 | Identification of Genes Induced in Peripheral Nerve after Injury. Journal of Biological Chemistry, 2001, 276, 34131-34141.                                                                                                              | 1.6  | 73        |
| 165 | Ionizing Radiation Down-regulates p53 Protein in Primary Egr-1â^'/â^' Mouse Embryonic Fibroblast Cells<br>Causing Enhanced Resistance to Apoptosis. Journal of Biological Chemistry, 2001, 276, 3279-3286.                              | 1.6  | 51        |
| 166 | Differential Expression of Fas Ligand in Th1 and Th2 Cells Is Regulated by Early Growth Response Gene<br>and NF-AT Family Members. Journal of Immunology, 2001, 166, 4534-4542.                                                         | 0.4  | 47        |
| 167 | The Transcription Factor Early Growth-response Factor 1 Modulates Tumor Necrosis Factor- α ,<br>Immunoglobulin E, and Airway Responsiveness in Mice. American Journal of Respiratory and Critical<br>Care Medicine, 2001, 163, 778-785. | 2.5  | 46        |
| 168 | GDNF and neurturin are target-derived factors essential for cranial parasympathetic neuron development. Development (Cambridge), 2001, 128, 3773-3782.                                                                                  | 1.2  | 53        |
| 169 | RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development (Cambridge), 2001, 128, 3963-3974.                                                                             | 1.2  | 254       |
| 170 | c-Src Is Required for Glial Cell Line-Derived Neurotrophic Factor (GDNF) Family Ligand-Mediated<br>Neuronal Survival via a Phosphatidylinositol-3 Kinase (PI-3K)-Dependent Pathway. Journal of<br>Neuroscience, 2001, 21, 1464-1472.    | 1.7  | 143       |
| 171 | The GDNF family ligands and receptors — implications for neural development. Current Opinion in Neurobiology, 2000, 10, 103-110.                                                                                                        | 2.0  | 418       |
| 172 | Ninjurin2, a Novel Homophilic Adhesion Molecule, Is Expressed in Mature Sensory and Enteric Neurons and Promotes Neurite Outgrowth. Journal of Neuroscience, 2000, 20, 187-195.                                                         | 1.7  | 120       |
| 173 | A Novel Activation Function for NAB Proteins in EGR-dependent Transcription of the Luteinizing Hormone Î <sup>2</sup> Gene. Journal of Biological Chemistry, 2000, 275, 9749-9757.                                                      | 1.6  | 85        |
| 174 | Role of Egr1 in Hippocampal Synaptic Enhancement Induced by Tetanic Stimulation and Amputation.<br>Journal of Cell Biology, 2000, 149, 1325-1334.                                                                                       | 2.3  | 104       |
| 175 | Functional Compensation by Egr4 in Egr1 -Dependent Luteinizing Hormone Regulation and Leydig Cell<br>Steroidogenesis. Molecular and Cellular Biology, 2000, 20, 5261-5268.                                                              | 1.1  | 73        |
| 176 | EGR1 Target Genes in Prostate Carcinoma Cells Identified by Microarray Analysis. Journal of Biological<br>Chemistry, 2000, 275, 38524-38531.                                                                                            | 1.6  | 160       |
| 177 | Dual Fluorescent In Situ Hybridization and Immunohistochemical Detection with Tyramide Signal Amplification. Journal of Histochemistry and Cytochemistry, 2000, 48, 1369-1375.                                                          | 1.3  | 74        |
| 178 | TGFÎ <sup>2</sup> Trophic Factors Differentially Modulate Motor Axon Outgrowth and Protection from Excitotoxicity. Experimental Neurology, 2000, 161, 664-675.                                                                          | 2.0  | 66        |
| 179 | Tissue factor expression and angiogenesisin human prostate carcinoma. Human Pathology, 2000, 31, 443-447.                                                                                                                               | 1.1  | 124       |
| 180 | GFRα-Mediated Localization of RET to Lipid Rafts Is Required for Effective Downstream Signaling,<br>Differentiation, and Neuronal Survival. Neuron, 2000, 25, 611-623.                                                                  | 3.8  | 274       |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Functional Mapping of Receptor Specificity Domains of Glial Cell Line-derived Neurotrophic Factor<br>(GDNF) Family Ligands and Production of GFRα1 RET-specific Agonists. Journal of Biological Chemistry,<br>2000, 275, 3412-3420.                               | 1.6 | 54        |
| 182 | Analysis of the Retrograde Transport of Glial Cell Line-Derived Neurotrophic Factor (GDNF),<br>Neurturin, and Persephin Suggests That <i>In Vivo</i> Signaling for the GDNF Family is GFRI±<br>Coreceptor-Specific. Journal of Neuroscience, 1999, 19, 9322-9331. | 1.7 | 112       |
| 183 | Multiple Actions of Neurturin Correlate with Spatiotemporal Patterns of Ret Expression in<br>Developing Chick Cranial Ganglion Neurons. Journal of Neuroscience, 1999, 19, 8476-8486.                                                                             | 1.7 | 22        |
| 184 | Prostate Apoptosis in Response to Castration in Wildâ€Type and Nerve Growth Factorâ€Induced Gene<br>Aâ€Deficient Mice. Prostate Journal, 1999, 1, 88-92.                                                                                                          | 0.2 | 0         |
| 185 | Neurturin: An autocrine regulator of renal collecting duct development. , 1999, 24, 284-292.                                                                                                                                                                      |     | 36        |
| 186 | Gene Targeting Reveals a Critical Role for Neurturin in the Development and Maintenance of Enteric,<br>Sensory, and Parasympathetic Neurons. Neuron, 1999, 22, 253-263.                                                                                           | 3.8 | 303       |
| 187 | Expression of Neurturin, GDNF, and GDNF Family-Receptor mRNA in the Developing and Mature Mouse.<br>Experimental Neurology, 1999, 158, 504-528.                                                                                                                   | 2.0 | 317       |
| 188 | Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3. Nature Genetics, 1998, 20, 87-91.                                                                                                                                       | 9.4 | 270       |
| 189 | Expression of neurturin, GDNF, and their receptors in the adult mouse CNS. , 1998, 398, 139-150.                                                                                                                                                                  |     | 153       |
| 190 | Persephin, a Novel Neurotrophic Factor Related to GDNF and Neurturin. Neuron, 1998, 20, 245-253.                                                                                                                                                                  | 3.8 | 460       |
| 191 | GFRα1-Deficient Mice Have Deficits in the Enteric Nervous System and Kidneys. Neuron, 1998, 21, 317-324.                                                                                                                                                          | 3.8 | 443       |
| 192 | Artemin, a Novel Member of the GDNF Ligand Family, Supports Peripheral and Central Neurons and Signals through the GFRα3–RET Receptor Complex. Neuron, 1998, 21, 1291-1302.                                                                                       | 3.8 | 540       |
| 193 | Neurturin and GDNF Promote Proliferation and Survival of Enteric Neuron and Glial Progenitorsin<br>Vitro. Developmental Biology, 1998, 200, 116-129.                                                                                                              | 0.9 | 211       |
| 194 | Nab1, a Corepressor of NGFI-A (Egr-1), Contains an Active Transcriptional Repression Domain.<br>Molecular and Cellular Biology, 1998, 18, 512-524.                                                                                                                | 1.1 | 100       |
| 195 | The Transcriptional Corepressor NAB2 Inhibits NGF-induced Differentiation of PC12 Cells. Journal of Cell Biology, 1998, 142, 1075-1082.                                                                                                                           | 2.3 | 58        |
| 196 | Midkine Induces Tumor Cell Proliferation and Binds to a High Affinity Signaling Receptor Associated with JAK Tyrosine Kinases. Journal of Biological Chemistry, 1998, 273, 3654-3660.                                                                             | 1.6 | 58        |
| 197 | Nuclear Receptor DAX-1 Recruits Nuclear Receptor Corepressor N-CoR to Steroidogenic Factor 1.<br>Molecular and Cellular Biology, 1998, 18, 2949-2956.                                                                                                             | 1.1 | 311       |
| 198 | Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3. Nature Genetics, 1998, 20, 87-91.                                                                                                                                       | 9.4 | 168       |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Characterization of the Promoter of SF-1, an Orphan Nuclear Receptor Required for Adrenal and<br>Gonadal Development. Molecular Endocrinology, 1997, 11, 117-126.                                                | 3.7  | 68        |
| 200 | Differential Regulation of the Transcriptional Activity of the Orphan Nuclear Receptor NGFI-B by<br>Membrane Depolarization and Nerve Growth Factor. Journal of Biological Chemistry, 1997, 272,<br>31278-31284. | 1.6  | 77        |
| 201 | Mechanism of Homophilic Binding Mediated by Ninjurin, a Novel Widely Expressed Adhesion Molecule.<br>Journal of Biological Chemistry, 1997, 272, 21373-21380.                                                    | 1.6  | 83        |
| 202 | TheNab2andStat6Genes Share a Common Transcription Termination Region. Genomics, 1997, 41, 33-39.                                                                                                                 | 1.3  | 19        |
| 203 | Neurturin, a Novel Neurotrophic Factor, Is Localized to Mouse Chromosome 17 and Human<br>Chromosome 19p13.3. Genomics, 1997, 44, 137-140.                                                                        | 1.3  | 20        |
| 204 | TrnR2, a Novel Receptor That Mediates Neurturin and GDNF Signaling through Ret. Neuron, 1997, 18, 793-802.                                                                                                       | 3.8  | 333       |
| 205 | Ninjurin, a Novel Adhesion Molecule, Is Induced by Nerve Injury and Promotes Axonal Growth. Neuron, 1996, 17, 353-361.                                                                                           | 3.8  | 207       |
| 206 | Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature, 1996, 384, 467-470.                                                                                                                | 13.7 | 688       |
| 207 | Growth and Differentiation Proceeds Normally in Cells Deficient in the Immediate Early Gene NGFI-A.<br>Journal of Biological Chemistry, 1995, 270, 9971-9977.                                                    | 1.6  | 153       |
| 208 | Postnatal development of survival responsiveness in rat sympathetic neurons to leukemia inhibitory factor and ciliary neurotrophic factor. Neuron, 1994, 12, 763-773.                                            | 3.8  | 62        |
| 209 | Identifying DNA-Binding Sites and Analyzing DNA-Binding Domains Using a Yeast Selection System.<br>Methods, 1993, 5, 125-137.                                                                                    | 1.9  | 43        |
| 210 | Developmentally regulated expression of pleiotrophin, a novel heparin binding growth factor, in the nervous system of the rat. Developmental Brain Research, 1993, 72, 133-144.                                  | 2.1  | 72        |
| 211 | Dorsal root ganglion neurons expressing trk are selectively sensitive to NGF deprivation in utero.<br>Neuron, 1992, 9, 779-788.                                                                                  | 3.8  | 122       |
| 212 | Differential activation of NGF receptor and early response genes in neural crest-derived cells.<br>Molecular Brain Research, 1992, 13, 75-81.                                                                    | 2.5  | 17        |
| 213 | Localization of the NGFI-A protein in the rat brain. Molecular Brain Research, 1990, 8, 177-180.                                                                                                                 | 2.5  | 48        |
| 214 | Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron, 1988,<br>1, 183-188.                                                                                                  | 3.8  | 630       |
| 215 | Insulin-Like Growth Factor Gene Expression during Rat Embryonic Development*. Endocrinology, 1987, 121, 2141-2144.                                                                                               | 1.4  | 126       |
| 216 | DNA Sequence Amplification in Mammalian Cells. International Review of Cytology, 1984, 90, 31-82.                                                                                                                | 6.2  | 177       |

| #   | Article                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Cloning of the initiation region of a mammalian chromosomal replicon. Nature, 1983, 302, 439-441. | 13.7 | 116       |