List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A set of standard modeling commands for the history-based parametric approach. CAD Computer Aided Design, 2003, 35, 1171-1179.	2.7	125
2	Feature-based simplification of boundary representation models using sequential iterative volume decomposition. Computers and Graphics, 2014, 38, 97-107.	2.5	47
3	Protection of intellectual property based on a skeleton model in product design collaboration. CAD Computer Aided Design, 2009, 41, 641-648.	2.7	45
4	Simplification of feature-based 3D CAD assembly data of ship and offshore equipment using quantitative evaluation metrics. CAD Computer Aided Design, 2015, 59, 140-154.	2.7	40
5	Knowledge-based part similarity measurement utilizing ontology and multi-criteria decision making technique. Advanced Engineering Informatics, 2011, 25, 119-130.	8.0	31
6	Deep-learning-based retrieval of piping component catalogs for plant 3D CAD model reconstruction. Computers in Industry, 2020, 123, 103320.	9.9	30
7	Sharing product data of nuclear power plants across their lifecycles by utilizing a neutral model. Annals of Nuclear Energy, 2008, 35, 175-186.	1.8	28
8	Method to simplify ship outfitting and offshore plant equipment three-dimensional (3-D) computer-aided design (CAD) data for construction of an equipment catalog. Journal of Marine Science and Technology, 2014, 19, 185-196.	2.9	28
9	Features Recognition from Piping and Instrumentation Diagrams in Image Format Using a Deep Learning Network. Energies, 2019, 12, 4425.	3.1	28
10	Representation and Propagation of Engineering Change Information in Collaborative Product Development using a Neutral Reference Model. Concurrent Engineering Research and Applications, 2009, 17, 147-157.	3.2	26
11	Integration of distributed plant lifecycle data using ISO 15926 and Web services. Annals of Nuclear Energy, 2011, 38, 2309-2318.	1.8	26
12	Stepwise volume decomposition for the modification of B-rep models. International Journal of Advanced Manufacturing Technology, 2014, 75, 1393-1403.	3.0	24
13	Toward standardized exchange of plant 3D CAD models using ISO 15926. CAD Computer Aided Design, 2017, 83, 80-95.	2.7	24
14	A procedural method to exchange editable 3D data from a free-hand 2D sketch modeling system into 3D mechanical CAD systems. CAD Computer Aided Design, 2012, 44, 123-131.	2.7	22
15	Retrieval of CAD model data based on Web Services for collaborative product development in a distributed environment. International Journal of Advanced Manufacturing Technology, 2010, 50, 1085-1099.	3.0	21
16	Feature shape complexity: a new criterion for the simplification of feature-based 3D CAD models. International Journal of Advanced Manufacturing Technology, 2017, 88, 1831-1843.	3.0	21
17	Deep-learning-based recognition of symbols and texts at an industrially applicable level from images of high-density piping and instrumentation diagrams. Expert Systems With Applications, 2021, 183, 115337.	7.6	21
18	B-rep model simplification using selective and iterative volume decomposition to obtain finer multi-resolution models. CAD Computer Aided Design, 2019, 112, 23-34.	2.7	19

#	Article	IF	CITATIONS
19	Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems. Scientific Reports, 2021, 11, 22147.	3.3	18
20	An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data. Annals of Nuclear Energy, 2010, 37, 389-397.	1.8	16
21	Enhanced volume decomposition minimizing overlapping volumes for the recognition of design features. Journal of Mechanical Science and Technology, 2015, 29, 5289-5298.	1.5	16
22	Graph-Based Simplification of Feature-Based Three-Dimensional Computer-Aided Design Models for Preserving Connectivity. Journal of Computing and Information Science in Engineering, 2015, 15, .	2.7	16
23	Shape distribution-based retrieval of 3D CAD models at different levels of detail. Multimedia Tools and Applications, 2017, 76, 15867-15884.	3.9	16
24	A method to exchange procedurally represented 2D CAD model data using ISO 10303 STEP. CAD Computer Aided Design, 2011, 43, 1717-1728.	2.7	15
25	Name matching method using topology merging and splitting history for exchange of feature-based CAD models. Journal of Mechanical Science and Technology, 2012, 26, 3201-3212.	1.5	15
26	Maintenance Framework for Repairing Partially Damaged Parts Using 3D Printing. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1451-1464.	2.2	15
27	Enhancement of equipment information sharing using three-dimensional computer-aided design simplification and digital catalog techniques in the plant industry. Concurrent Engineering Research and Applications, 2016, 24, 275-289.	3.2	14
28	User-assisted integrated method for controlling level of detail of large-scale B-rep assembly models. International Journal of Computer Integrated Manufacturing, 2018, 31, 881-892.	4.6	13
29	Part library-based information retrieval and inspection framework to support part maintenance using 3D printing technology. Rapid Prototyping Journal, 2019, 25, 630-644.	3.2	13
30	Dataset and method for deep learning-based reconstruction of 3D CAD models containing machining features for mechanical parts. Journal of Computational Design and Engineering, 2021, 9, 114-127.	3.1	13
31	OpenPDM-based product data exchange among heterogeneous PDM systems in a distributed environment. International Journal of Advanced Manufacturing Technology, 2009, 40, 1033-1043.	3.0	12
32	Three-dimensional solid reconstruction of a human bone from CT images using interpolation with triangular Bézier patches. Journal of Mechanical Science and Technology, 2017, 31, 3875-3886.	1.5	12
33	A method of generating depth images for view-based shape retrieval of 3D CAD models from partial point clouds. Multimedia Tools and Applications, 2021, 80, 10859-10880.	3.9	12
34	Integrated management of facility, process, and output: data model perspective. Science China Information Sciences, 2012, 55, 994-1007.	4.3	11
35	Shape distribution-based approach to comparing 3D CAD assembly models. Journal of Mechanical Science and Technology, 2017, 31, 5627-5638.	1.5	11
36	Web Service with Parallel Processing Capabilities for the Retrieval of CAD Assembly Data. Concurrent Engineering Research and Applications, 2011, 19, 5-18.	3.2	10

#	Article	IF	CITATIONS
37	Discrete event simulation of Maglev transport considering traffic waves. Journal of Computational Design and Engineering, 2014, 1, 233-242.	3.1	10
38	Standardized exchange of plant equipment and materials data based on ISO 15926 methodology in nuclear power plants. Annals of Nuclear Energy, 2018, 118, 185-198.	1.8	10
39	Deep Learning-Based Method to Recognize Line Objects and Flow Arrows from Image-Format Piping and Instrumentation Diagrams for Digitization. Applied Sciences (Switzerland), 2021, 11, 10054.	2.5	10
40	Extended progressive simplification of feature-based CAD models. International Journal of Advanced Manufacturing Technology, 2017, 93, 915-932.	3.0	8
41	Part recognition–based simplification of triangular mesh models for ships and plants. International Journal of Advanced Manufacturing Technology, 2019, 105, 1329-1342.	3.0	8
42	A Method to Minimize the Data Size of a Lightweight Model for Ship and Offshore Plant Structure Using Part Characteristics. Journal of Marine Science and Engineering, 2020, 8, 763.	2.6	8
43	Semantics-aware adaptive simplification for lightweighting diverse 3D CAD models in industrial plants. Journal of Mechanical Science and Technology, 2020, 34, 1289-1300.	1.5	8
44	Mesh-offset-based method to generate a delta volume to support the maintenance of partially damaged parts through 3D printing. Journal of Mechanical Science and Technology, 2021, 35, 3131-3143.	1.5	8
45	End-to-end digitization of image format piping and instrumentation diagrams at an industrially applicable level. Journal of Computational Design and Engineering, 2022, 9, 1298-1326.	3.1	8
46	Simulating ship and buoy motions arising from ocean waves in a ship handling simulator. Simulation, 2012, 88, 1407-1418.	1.8	6
47	ISO 15926–based integration of process plant life-cycle information including maintenance activity. Concurrent Engineering Research and Applications, 2020, 28, 58-71.	3.2	6
48	Multiobjective evolutionary optimization for feature-based simplification of 3D boundary representation models. International Journal of Advanced Manufacturing Technology, 2020, 110, 2603-2618.	3.0	6
49	Deep learning applications in an industrial process plant: repository of segmented point clouds for pipework components. JMST Advances, 2020, 2, 15-24.	1.9	6
50	Lifecycle management of component catalogs based on a neutral model to support seamless integration with plant 3D design. Journal of Computational Design and Engineering, 2021, 8, 409-427.	3.1	6
51	Iterative offset-based method for reconstructing a mesh model from the point cloud of a pig. Computers and Electronics in Agriculture, 2022, 198, 106996.	7.7	6
52	Securing design checking service for the regulation-based product design. Computers in Industry, 2012, 63, 586-596.	9.9	5
53	Counter-deformed design of ship structural parts using geometric shape deformation based on welding distortion estimation. Journal of Marine Science and Technology, 2015, 20, 442-453.	2.9	5
54	Implementation of persistent identification of topological entities based on macro-parametrics approach. Journal of Computational Design and Engineering, 2016, 3, 161-177.	3.1	5

#	Article	IF	CITATIONS
55	Manufacturability evaluation of parts using descriptor-based machining feature recognition. International Journal of Computer Integrated Manufacturing, 2021, 34, 1196-1222.	4.6	5
56	Exchange of Plant P&ID Data Based on ISO 15926 Using iRINGTools. Korean Journal of Computational Design and Engineering, 2013, 18, 200-210.	0.0	5
5 7	A Method for Automatic Generation of Parametric Computer Aided Design Models in a Mold Base e-Catalog System. Journal of Computing and Information Science in Engineering, 2006, 6, 308-314.	2.7	4
58	Engineered-to-order Approach for Providing Flexibility in e-Commerce of Mold Parts. Concurrent Engineering Research and Applications, 2007, 15, 345-355.	3.2	4
59	Profile-based feature representation method and its application in data exchange from mechanical CAD systems to ship CAD systems. Journal of Mechanical Science and Technology, 2016, 30, 5641-5649.	1.5	4
60	Determination of appropriate level of detail of a three-dimensional computer-aided design model from a permissible dissimilarity for fully automated simplification. Advances in Mechanical Engineering, 2017, 9, 168781401770712.	1.6	4
61	Neutral model-based interfacing of 3D design to support collaborative project management in the process plant industry. Journal of Computational Design and Engineering, 2021, 8, 824-835.	3.1	4
62	Deep learning-based digitalization of a part catalog book to generate part specification by a neutral reference data dictionary. Computers in Industry, 2022, 139, 103665.	9.9	4
63	Verification of product design using regulation knowledgebase and Web services. Journal of Mechanical Science and Technology, 2015, 29, 5113-5119.	1.5	3
64	Similarity comparison of original and remodeled plant 3D piping CAD models using quantitative evaluation metrics for offshore plants. Journal of Marine Science and Technology, 2018, 23, 647-661.	2.9	3
65	Practical method for the fast generation of a CAM model for jet engine parts. Advances in Mechanical Engineering, 2021, 13, 168781402110027.	1.6	3
66	A Method for Measuring Part Similarity Using Ontology and a Multi-Criteria Decision Making Method. , 2009, , .		2
67	Robust generation of the delta volume for the damaged area of a part using the marching cubes algorithm to support additive manufacturing–based part maintenance. International Journal of Advanced Manufacturing Technology, 2021, 117, 1473.	3.0	1
68	Design Verification System Framework of Pressure Vessels Using Korea Industrial Standards. Transactions of the Korean Society of Mechanical Engineers, A, 2015, 39, 291-301.	0.2	1
69	Development of Preprocessor for the Exchange of Equipment and Materials' Specifications Sheet Data Based on ISO 15926. Transactions of the Korean Society of Mechanical Engineers, A, 2018, 42, 1141-1158.	0.2	1
70	Development of A Postprocessor for Exchanging of Equipment and Materials Specification-sheet Data Based on ISO 15926. Transactions of the Korean Society of Mechanical Engineers, A, 2019, 43, 373-383.	0.2	1
71	Non-overlapping Volume Decomposition Using Maximum Volumes. Korean Journal of Computational Design and Engineering, 2014, 19, 50-60.	0.0	1
72	Stepwise Volume Decomposition Considering Design Feature Recognition. Korean Journal of Computational Design and Engineering, 2013, 18, 71-82.	0.0	1

#	Article	IF	CITATIONS
73	Development of 3D CAD Part Data Simplification System for Ship and Offshore Plant Equipment. Korean Journal of Computational Design and Engineering, 2013, 18, 167-176.	0.0	1
74	Simplification of Boundary Representation Models Based on Stepwise Volume Decomposition. Transactions of the Korean Society of Mechanical Engineers, A, 2013, 37, 1305-1313.	0.2	1
75	Development of Feature-Based 3D CAD Assembly Data Simplification System for Equipment and Materials. Transactions of the Korean Society of Mechanical Engineers, A, 2014, 38, 1075-1084.	0.2	1
76	Development of an Editor for Reference Data Library Based on ISO 15926. Korean Journal of Computational Design and Engineering, 2014, 19, 390-401.	0.0	1
77	Development of an UG NX-based Plug-in Type System for the Simplification of 3D CAD Assembly Models. Transactions of the Korean Society of Mechanical Engineers, A, 2017, 41, 1239-1246.	0.2	1
78	Development of a System to Translate Fitting Parts" Spec-Catalog Data between Plant 3D CAD Systems and Neutral Model. Transactions of the Korean Society of Mechanical Engineers, A, 2019, 43, 657-665.	0.2	1
79	Development of a System to Retrieve Manufacturing Conditions to Support 3D Printing-Based Part Maintenance. Journal of the Korean Society for Precision Engineering, 2020, 37, 633-640.	0.2	1
80	Counter-Deformed Design of Ship Structural Parts Using Geometric Shape Deformation Based on Welding Distortion Estimation. , 2013, , .		0
81	Development of Procedural 2D CAD Data Translator Supporting ISO 10303 STEP. Transactions of the Korean Society of Mechanical Engineers, A, 2013, 37, 693-705.	0.2	0
82	Development of an ISO 15926-based Integration Platform of 3D Design Data for Process Plants. Korean Journal of Computational Design and Engineering, 2015, 20, 385-400.	0.0	0
83	Development of a Similarity Evaluation System for Offshore Plants' 3D Piping CAD Models Created Using Aveva Marine and SmartMarine 3D. Transactions of the Korean Society of Mechanical Engineers, A, 2016, 40, 397-406.	0.2	0
84	Reconstruction of primitive-shaped pipe elbows from a triangular mesh in ship outfitting model. Journal of Mechanical Science and Technology, 2021, 35, 5551-5560.	1.5	0