

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5017754/publications.pdf Version: 2024-02-01

lu lu

#	Article	IF	CITATIONS
1	Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114823.	6.6	148
2	A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114778.	6.6	92
3	Approximation rates of DeepONets for learning operators arising from advection–diffusion equations. Neural Networks, 2022, 153, 411-426.	5.9	15
4	Multifidelity deep neural operators for efficient learning of partial differential equationsÂwith application to fast inverse design of nanoscale heat transport. Physical Review Research, 2022, 4, .	3.6	41
5	Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 2021, 3, 218-229.	16.0	589
6	Operator learning for predicting multiscale bubble growth dynamics. Journal of Chemical Physics, 2021, 154, 104118.	3.0	71
7	Physics-informed machine learning. Nature Reviews Physics, 2021, 3, 422-440.	26.6	1,789
8	Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients. Npj Digital Medicine, 2021, 4, 109.	10.9	48
9	DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks. Journal of Computational Physics, 2021, 436, 110296.	3.8	92
10	DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. Journal of Computational Physics, 2021, 447, 110698.	3.8	55
11	DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Review, 2021, 63, 208-228.	9.5	677
12	How the spleen reshapes and retains young and old red blood cells: A computational investigation. PLoS Computational Biology, 2021, 17, e1009516.	3.2	22
13	Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SIAM Journal of Scientific Computing, 2021, 43, B1105-B1132.	2.8	167
14	Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness. Neural Networks, 2020, 130, 85-99.	5.9	23
15	Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7052-7062.	7.1	178
16	Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics Express, 2020, 28, 11618.	3.4	257
17	Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Computational Biology, 2020, 16, e1007575.	3.2	133
18	Dying ReLU and Initialization: Theory and Numerical Examples. Communications in Computational Physics, 2020, 28, 1671-1706.	1.7	112

Lu Lu

#	Article	IF	CITATIONS
19	Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies. Science Advances, 2019, 5, eaax3905.	10.3	18
20	Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. Journal of Computational Physics, 2019, 397, 108850.	3.8	212
21	fPINNs: Fractional Physics-Informed Neural Networks. SIAM Journal of Scientific Computing, 2019, 41, A2603-A2626.	2.8	365
22	Modeling biomembranes and red blood cells by coarse-grained particle methods. Applied Mathematics and Mechanics (English Edition), 2018, 39, 3-20.	3.6	16
23	Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes. Biophysical Journal, 2018, 114, 2014-2023.	0.5	46
24	Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9574-9579.	7.1	93
25	Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. Journal of Physical Chemistry B, 2018, 122, 11302-11310.	2.6	6
26	Synergistic Integration of Laboratory and Numerical Approaches in Studies of the Biomechanics of Diseased Red Blood Cells. Biosensors, 2018, 8, 76.	4.7	16
27	Recognizing human actions by two-level Beta process hidden Markov model. Multimedia Systems, 2017, 23, 183-194.	4.7	8
28	OpenRBC: A Fast Simulator of Red Blood Cells atÂProtein Resolution. Biophysical Journal, 2017, 112, 2030-2037.	0.5	47
29	Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers. Biophysical Journal, 2017, 113, 48-59.	0.5	16
30	Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations. Biophysical Journal, 2016, 110, 2085-2093.	0.5	22
31	A method for action recognition based on pose and interest points. Multimedia Tools and Applications, 2015, 74, 6091-6109.	3.9	1