Cornu00e9 Pieterse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5016241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17, 478-486.	8.8	3,741
2	Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology, 2006, 44, 135-162.	7.8	2,754
3	Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 2012, 28, 489-521.	9.4	2,396
4	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	7.8	2,193
5	Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009, 5, 308-316.	8.0	1,987
6	SYSTEMIC RESISTANCE INDUCED BY RHIZOSPHERE BACTERIA. Annual Review of Phytopathology, 1998, 36, 453-483.	7.8	1,964
7	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	2.6	1,241
8	A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. Plant Cell, 1998, 10, 1571-1580.	6.6	1,029
9	NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. Plant Cell, 2003, 15, 760-770.	6.6	1,011
10	Signal Signature and Transcriptome Changes of Arabidopsis During Pathogen and Insect Attack. Molecular Plant-Microbe Interactions, 2005, 18, 923-937.	2.6	909
11	Cross Talk in Defense Signaling. Plant Physiology, 2008, 146, 839-844.	4.8	878
12	Priming in plant–pathogen interactions. Trends in Plant Science, 2002, 7, 210-216.	8.8	853
13	Modulation of Host Immunity by Beneficial Microbes. Molecular Plant-Microbe Interactions, 2012, 25, 139-150.	2.6	783
14	Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 2008, 11, 443-448.	7.1	755
15	Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5602-5607.	7.1	727
16	Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression Plant Cell, 1996, 8, 1225-1237.	6.6	647
17	The AP2/ERF Domain Transcription Factor ORA59 Integrates Jasmonic Acid and Ethylene Signals in Plant Defense Â. Plant Physiology, 2008, 147, 1347-1357.	4.8	609
18	MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5213-E5222.	7.1	608

Cornuooe9 Pieterse

#	Article	IF	CITATIONS
19	Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12, 1496-1507.	9.8	603
20	Salicylic acid-independent plant defence pathways. Trends in Plant Science, 1999, 4, 52-58.	8.8	584
21	Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsisthaliana. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8711-8716.	7.1	569
22	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	8.8	549
23	Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15, 507-514.	8.8	528
24	Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 2018, 267, 102-111.	3.6	490
25	Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Frontiers in Microbiology, 2017, 8, 2552.	3.5	488
26	The Transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 2004, 17, 895-908.	2.6	483
27	Induced Systemic Resistance by Fluorescent Pseudomonas spp Phytopathology, 2007, 97, 239-243.	2.2	472
28	NPR1: the spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology, 2004, 7, 456-464.	7.1	435
29	How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 2015, 6, 170.	3.6	400
30	Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends in Plant Science, 2007, 12, 564-569.	8.8	399
31	Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59 Â Â. Plant Cell, 2013, 25, 744-761.	6.6	381
32	The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 2013, 4, 165.	3.6	372
33	Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 2009, 70, 1581-1588.	2.9	369
34	The Soil-Borne Legacy. Cell, 2018, 172, 1178-1180.	28.9	366
35	Differential Induction of Systemic Resistance in Arabidopsis by Biocontrol Bacteria. Molecular Plant-Microbe Interactions, 1997, 10, 716-724.	2.6	365
36	Kinetics of Salicylate-Mediated Suppression of Jasmonate Signaling Reveal a Role for Redox Modulation. Plant Physiology, 2008, 147, 1358-1368.	4.8	331

#	Article	IF	CITATIONS
37	Differential Effectiveness of Salicylate-Dependent and Jasmonate/Ethylene-Dependent Induced Resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 2002, 15, 27-34.	2.6	330
38	Unraveling Root Developmental Programs Initiated by Beneficial <i>Pseudomonas</i> spp. Bacteria Â. Plant Physiology, 2013, 162, 304-318.	4.8	288
39	Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology, 1999, 41, 537-549.	3.9	283
40	Plant Immunity: It's the Hormones Talking, But What Do They Say?. Plant Physiology, 2010, 154, 536-540.	4.8	280
41	Shifting from priming of salicylic acid―to jasmonic acidâ€regulated defences by <i>Trichoderma</i> protects tomato against the root knot nematode <i>Meloidogyne incognita</i> . New Phytologist, 2017, 213, 1363-1377.	7.3	275
42	Ethylene Modulates the Role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in Cross Talk between Salicylate and Jasmonate Signaling Â. Plant Physiology, 2009, 149, 1797-1809.	4.8	269
43	Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteriaâ€induced systemic resistance in <i>Arabidopsis thaliana</i> . New Phytologist, 2008, 180, 511-523.	7.3	264
44	<i>MYB72</i> Is Required in Early Signaling Steps of Rhizobacteria-Induced Systemic Resistance in Arabidopsis Â. Plant Physiology, 2008, 146, 1293-1304.	4.8	255
45	Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 2010, 232, 1423-1432.	3.2	249
46	MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biology, 2009, 11, 90-96.	3.8	245
47	The Age of Coumarins in Plant–Microbe Interactions. Plant and Cell Physiology, 2019, 60, 1405-1419.	3.1	241
48	Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiological and Molecular Plant Pathology, 2000, 57, 123-134.	2.5	222
49	Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. Plant Cell, 2017, 29, 2086-2105.	6.6	220
50	Differential Effectiveness of Microbially Induced Resistance Against Herbivorous Insects in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2008, 21, 919-930.	2.6	213
51	Silencing of the Mitogen-Activated Protein Kinase MPK6 Compromises Disease Resistance in Arabidopsis. Plant Cell, 2004, 16, 897-907.	6.6	211
52	Herbivore-Induced Resistance against Microbial Pathogens in Arabidopsis. Plant Physiology, 2006, 142, 352-363.	4.8	207
53	Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant Journal, 2016, 86, 249-267.	5.7	200
54	Jasmonates - Signals in Plant-Microbe Interactions. Journal of Plant Growth Regulation, 2004, 23,	5.1	194

^{*} 211-222.

#	Article	IF	CITATIONS
55	Priming of plant innate immunity by rhizobacteria and βâ€aminobutyric acid: differences and similarities in regulation. New Phytologist, 2009, 183, 419-431.	7.3	192
56	Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant Journal, 2018, 93, 166-180.	5.7	191
57	Induced Systemic Resistance in <i>Arabidopsis thaliana</i> Against <i>Pseudomonas syringae</i> pv. <i>tomato</i> by 2,4-Diacetylphloroglucinol-Producing <i>Pseudomonas fluorescens</i> . Phytopathology, 2012, 102, 403-412.	2.2	190
58	Signalling in Rhizobacteria-Induced Systemic Resistance inArabidopsis thaliana. Plant Biology, 2002, 4, 535-544.	3.8	189
59	βâ€Glucosidase <scp>BGLU</scp> 42 is a <scp>MYB</scp> 72â€dependent key regulator of rhizobacteriaâ€induced systemic resistance and modulates iron deficiency responses in <i><scp>A</scp>rabidopsis</i> roots. New Phytologist, 2014, 204, 368-379.	7.3	188
60	Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 2015, 16, 539.	2.8	184
61	Iron and Immunity. Annual Review of Phytopathology, 2017, 55, 355-375.	7.8	183
62	Systemic Resistance in Arabidopsis Induced by Rhizobacteria Requires Ethylene-Dependent Signaling at the Site of Application. Molecular Plant-Microbe Interactions, 1999, 12, 720-727.	2.6	182
63	Rhizobacteria-mediated Induced Systemic Resistance: Triggering, Signalling and Expression. European Journal of Plant Pathology, 2001, 107, 51-61.	1.7	181
64	Perception of low red:farâ€red ratio compromises both salicylic acid―and jasmonic acidâ€dependent pathogen defences in <scp>A</scp> rabidopsis. Plant Journal, 2013, 75, 90-103.	5.7	181
65	Low Red/Far-Red Ratios Reduce Arabidopsis Resistance to <i>Botrytis cinerea</i> and Jasmonate Responses via a COI1-JAZ10-Dependent, Salicylic Acid-Independent Mechanism Â. Plant Physiology, 2012, 158, 2042-2052.	4.8	180
66	Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Functional Ecology, 2013, 27, 599-609.	3.6	178
67	Beneficial microbes in a changing environment: are they always helping plants to deal with insects?. Functional Ecology, 2013, 27, 574-586.	3.6	171
68	Costs and benefits of hormoneâ€regulated plant defences. Plant Pathology, 2013, 62, 43-55.	2.4	171
69	Rhizobacterial volatiles and photosynthesisâ€related signals coordinate <i><scp>MYB</scp>72</i> expression in Arabidopsis roots during onset of induced systemic resistance and ironâ€deficiency responses. Plant Journal, 2015, 84, 309-322.	5.7	171
70	Ethylene Signaling Renders the Jasmonate Response of <i>Arabidopsis</i> Insensitive to Future Suppression by Salicylic Acid. Molecular Plant-Microbe Interactions, 2010, 23, 187-197.	2.6	169
71	Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Frontiers in Plant Science, 2015, 6, 639.	3.6	165
72	The Soil-Borne Supremacy. Trends in Plant Science, 2016, 21, 171-173.	8.8	159

#	Article	IF	CITATIONS
73	Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Frontiers in Plant Science, 2011, 2, 47.	3.6	155
74	RNA-Seq: revelation of the messengers. Trends in Plant Science, 2013, 18, 175-179.	8.8	155
75	Airborne signals from <i>Trichoderma</i> fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acidâ€dependent defences in shoots of <scp><i>Arabidopsis thaliana</i></scp> and <scp><i>Solanum lycopersicum</i></scp> . Plant, Cell and Environment, 2017, 40, 2691-2705.	5.7	153
76	Ethylene: traffic controller on hormonal crossroads to defense. Plant Physiology, 2015, 169, pp.01020.2015.	4.8	149
77	Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Frontiers in Plant Science, 2013, 4, 539.	3.6	144
78	Genetic architecture of plant stress resistance: multiâ€ŧrait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	7.3	144
79	Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Canadian Journal of Plant Pathology, 2003, 25, 5-9.	1.4	142
80	Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiological and Molecular Plant Pathology, 1995, 46, 309-320.	2.5	140
81	Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 2016, 90, 623-634.	3.9	140
82	Microbial recognition and evasion of host immunity. Journal of Experimental Botany, 2013, 64, 1237-1248.	4.8	133
83	Beneficial microbes going underground of root immunity. Plant, Cell and Environment, 2019, 42, 2860-2870.	5.7	133
84	Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control, 2013, 65, 14-23.	3.0	132
85	Non-Mycorrhizal Plants: The Exceptions that Prove the Rule. Trends in Plant Science, 2018, 23, 577-587.	8.8	131
86	Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 2014, 10, 450-456.	8.0	128
87	Pseudomonas Evades Immune Recognition of Flagellin in Both Mammals and Plants. PLoS Pathogens, 2011, 7, e1002206.	4.7	124
88	Systemic Resistance in Arabidopsis Induced by Biocontrol Bacteria Is Independent of Salicylic Acid Accumulation and Pathogenesis-Related Gene Expression. Plant Cell, 1996, 8, 1225.	6.6	123
89	Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology, 2013, 27, 587-598.	3.6	114
90	Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. Current Biology, 2019, 29, 3913-3920.e4.	3.9	112

#	Article	IF	CITATIONS
91	Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Frontiers in Plant Science, 2013, 4, 414.	3.6	110
92	Abundantly Present miRNAs in Milk-Derived Extracellular Vesicles Are Conserved Between Mammals. Frontiers in Nutrition, 2018, 5, 81.	3.7	110
93	Coumarin Communication Along the Microbiome–Root–Shoot Axis. Trends in Plant Science, 2021, 26, 169-183.	8.8	107
94	Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathology Journal, 2013, 29, 136-143.	1.7	106
95	Microbial small molecules – weapons of plant subversion. Natural Product Reports, 2018, 35, 410-433.	10.3	105
96	The Arabidopsis ISR1 Locus Controlling Rhizobacteria-Mediated Induced Systemic Resistance Is Involved in Ethylene Signaling. Plant Physiology, 2001, 125, 652-661.	4.8	98
97	Characterization of Arabidopsisenhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant Journal, 2002, 29, 11-21.	5.7	98
98	Arbuscular mycorrhizal fungi reduce growth and infect roots of the nonâ€host plant <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1926-1937.	5.7	97
99	Structure and genomic organization of the ipiB and ipiO gene clusters of Phytophthora infestans. Gene, 1994, 138, 67-77.	2.2	95
100	A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Frontiers in Nutrition, 2018, 5, 80.	3.7	95
101	A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. Plant Cell, 1998, 10, 1571.	6.6	91
102	Identification of a Locus in Arabidopsis Controlling Both the Expression of Rhizobacteria-Mediated Induced Systemic Resistance (ISR) and Basal Resistance Against Pseudomonas syringae pv. tomato. Molecular Plant-Microbe Interactions, 1999, 12, 911-918.	2.6	88
103	The Induced Resistance Lexicon: Do's and Don'ts. Trends in Plant Science, 2021, 26, 685-691.	8.8	84
104	The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	8.3	80
105	Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Molecular Biology, 2003, 53, 655-667.	3.9	78
106	Reassessing the role of phospholipase D in the <i>Arabidopsis</i> wounding response. Plant, Cell and Environment, 2009, 32, 837-850.	5.7	74
107	Expression of the Phytophthora infestans ipiB and ipiO genes in planta and in vitro. Molecular Genetics and Genomics, 1994, 244, 269-277.	2.4	72
108	The <i>Arabidopsis thaliana</i> Transcription Factor AtMYB102 Functions in Defense Against The Insect Herbivore <i>Pieris rapae</i> . Plant Signaling and Behavior, 2006, 1, 305-311.	2.4	72

#	Article	IF	CITATIONS
109	An in planta induced gene of Phytophthora infestans codes for ubiquitin. Plant Molecular Biology, 1991, 17, 799-811.	3.9	68
110	<i>Pseudomonas syringae</i> Evades Host Immunity by Degrading Flagellin Monomers with Alkaline Protease AprA. Molecular Plant-Microbe Interactions, 2014, 27, 603-610.	2.6	68
111	Genomeâ€wide association study reveals novel players in defense hormone crosstalk in <i>Arabidopsis</i> . Plant, Cell and Environment, 2018, 41, 2342-2356.	5.7	67
112	Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. Plant and Cell Physiology, 2016, 58, pcw187.	3.1	66
113	Thrips advisor: exploiting thrips-induced defences to combat pests on crops. Journal of Experimental Botany, 2018, 69, 1837-1848.	4.8	66
114	Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and Molecular Plant Pathology, 2003, 62, 219-226.	2.5	64
115	Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Molecular Biology, 2005, 57, 731-748.	3.9	62
116	How Can We Define "Optimal Microbiota?― A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Frontiers in Nutrition, 2018, 5, 90.	3.7	61
117	Expression and antisense inhibition of transgenes in Phytophthora infestons is modulated by choice of promoter and position effects. Gene, 1993, 133, 63-69.	2.2	58
118	Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol. Frontiers in Microbiology, 2016, 7, 1620.	3.5	58
119	The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor. PLoS ONE, 2014, 9, e84891.	2.5	55
120	Bioassays for Assessing Jasmonate-Dependent Defenses Triggered by Pathogens, Herbivorous Insects, or Beneficial Rhizobacteria. Methods in Molecular Biology, 2013, 1011, 35-49.	0.9	53
121	Different shades of <scp>JAZ</scp> during plant growth and defense. New Phytologist, 2014, 204, 261-264.	7.3	53
122	Effect of prior drought and pathogen stress on <i>Arabidopsis</i> transcriptome changes to caterpillar herbivory. New Phytologist, 2016, 210, 1344-1356.	7.3	53
123	Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 2021, 461, 245-263.	3.7	53
124	Rapid evolution of bacterial mutualism in the plant rhizosphere. Nature Communications, 2021, 12, 3829.	12.8	51
125	Attenuation of pattern recognition receptor signaling is mediated by a <scp>MAP</scp> kinase kinase kinase kinase. EMBO Reports, 2016, 17, 441-454.	4.5	50
126	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	7.3	49

#	Article	IF	CITATIONS
127	Increased Expression of the Calmodulin Gene of the Late Blight FungusPhytophthora infestansDuring Pathogenesis on Potato. Molecular Plant-Microbe Interactions, 1993, 6, 164.	2.6	49
128	OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 2010, 10, 199.	3.6	46
129	Genetic dissection of basal defence responsiveness in accessions of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2011, 34, 1191-1206.	5.7	46
130	Prime Time for Transgenerational Defense. Plant Physiology, 2012, 158, 545-545.	4.8	44
131	Induced plant responses to microbes and insects. Frontiers in Plant Science, 2013, 4, 475.	3.6	42
132	Are Small GTPases Signal Hubs in Sugar-Mediated Induction of Fructan Biosynthesis?. PLoS ONE, 2009, 4, e6605.	2.5	38
133	Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis. Journal of Experimental Botany, 2011, 62, 1975-1990.	4.8	36
134	Type III Secretion System of Beneficial Rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Frontiers in Microbiology, 2019, 10, 1631.	3.5	36
135	Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis. Plant Signaling and Behavior, 2008, 3, 543-546.	2.4	33
136	Isolation of putative pathogenicity genes of the potato late blight fungus Phytophthora infestans by differential hybridization of a genomic library. Physiological and Molecular Plant Pathology, 1993, 43, 69-79.	2.5	32
137	Long-Term Induction of Defense Gene Expression in Potato by Pseudomonas sp. LBUM223 and Streptomyces scabies. Phytopathology, 2014, 104, 926-932.	2.2	32
138	NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans. Current Genetics, 1995, 27, 359-366.	1.7	31
139	Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Frontiers in Immunology, 2018, 9, 2223.	4.8	31
140	Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. European Journal of Plant Pathology, 2019, 154, 31-42.	1.7	31
141	<i>Arabidopsis thaliana cdd1</i> mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Molecular Plant Pathology, 2011, 12, 855-865.	4.2	30
142	Kinome profiling of Arabidopsis using arrays of kinase consensus substrates. Plant Methods, 2007, 3, 3.	4.3	28
143	Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. Frontiers in Plant Science, 2019, 10, 909.	3.6	28
144	Mechanisms underlying iron deficiency-induced resistance against pathogens with different lifestyles. Journal of Experimental Botany, 2021, 72, 2231-2241.	4.8	27

#	Article	IF	CITATIONS
145	Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine. Frontiers in Plant Science, 2017, 8, 700.	3.6	26
146	Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol - Second Edition. Frontiers in Microbiology, 2019, 10, 1935.	3.5	26
147	Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses. Planta, 2019, 249, 1087-1105.	3.2	26
148	Aphid feeding induces the relaxation of epigenetic control and the associated regulation of the defense response in <i>Arabidopsis</i> . New Phytologist, 2021, 230, 1185-1200.	7.3	24
149	Histone modifications do not play a major role in salicylate-mediated suppression of jasmonate-inducedPDF1.2gene expression. Communicative and Integrative Biology, 2008, 1, 143-145.	1.4	23
150	A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana. Plant Molecular Biology, 2021, 106, 319-334.	3.9	22
151	Signaling in Plant Resistance Responses: Divergence and Cross-Talk of Defense Pathways. , 2006, , 166-196.		21
152	Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by <i>Trichoderma</i> volatile compounds in Arabidopsis. Journal of Experimental Botany, 2022, 73, 584-595.	4.8	21
153	Kinome Profiling Reveals an Interaction Between Jasmonate, Salicylate and Light Control of Hyponastic Petiole Growth in Arabidopsis thaliana. PLoS ONE, 2010, 5, e14255.	2.5	21
154	Plants Under Attack. Plant Signaling and Behavior, 2007, 2, 527-529.	2.4	19
155	Signalling Cascades Involved in Induced Resistance. , 0, , 65-88.		19
156	Tracking plant preference for higherâ€quality mycorrhizal symbionts under varying <scp>CO</scp> ₂ conditions over multiple generations. Ecology and Evolution, 2018, 8, 78-87.	1.9	19
157	Experimental-Evolution-Driven Identification of <i>Arabidopsis</i> Rhizosphere Competence Genes in Pseudomonas protegens. MBio, 2021, 12, e0092721.	4.1	19
158	Molecular aspects of the potato — Phytophthora infestans interaction. European Journal of Plant Pathology, 1992, 98, 85-92.	0.5	18
159	Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance. Planta, 2020, 251, 75.	3.2	18
160	The Arabidopsis ISR1 Locus is Required for Rhizobacteria-Mediated Induced Systemic Resistance Against Different Pathogens. Plant Biology, 2002, 4, 224-227.	3.8	17
161	The Relationship Between Basal and Induced Resistance in Arabidopsis. , 2006, , 197-224.		15
162	Modulation of ethylene- and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate. Planta, 2012, 235, 677-685.	3.2	15

#	Article	IF	CITATIONS
163	Functional Analysis of Hyaloperonospora arabidopsidis RXLR Effectors. PLoS ONE, 2014, 9, e110624.	2.5	14
164	Title is missing!. European Journal of Plant Pathology, 2001, 107, 63-68.	1.7	13
165	Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage. PLoS ONE, 2018, 13, e0206103.	2.5	13
166	Jasmonates—Signals in plant-microbe interactions. Journal of Plant Growth Regulation, 2004, 23, 211-222.	5.1	12
167	Transcriptome Signatures in Pseudomonas simiae WCS417 Shed Light on Role of Root-Secreted Coumarins in Arabidopsis-Mutualist Communication. Microorganisms, 2021, 9, 575.	3.6	12
168	Wide Screening of Phage-Displayed Libraries Identifies Immune Targets in Planta. PLoS ONE, 2013, 8, e54654.	2.5	11
169	Induced Disease Resistance. , 2015, , 123-133.		10
170	Evolutionary "hide and seek―between bacterial flagellin and the plant immune system. Cell Host and Microbe, 2021, 29, 548-550.	11.0	10
171	Plant Defense Signaling from the Underground Primes Aboveground Defenses to Confer Enhanced Resistance in a Cost-Efficient Manner. Signaling and Communication in Plants, 2010, , 43-60.	0.7	9
172	The role of ethylene in rhizobacteria-induced systemic resistance (ISR). , 2007, , 325-331.		8
173	A family of pathogen-induced cysteine-rich transmembrane proteins is involved in plant disease resistance. Planta, 2021, 253, 102.	3.2	8
174	FUNCTION AND REGULATION OF THE EARLY NODULIN GENE ENOD2. , 1990, , 259-269.		8
175	Towards Healthy Planet Diets—A Transdisciplinary Approach to Food Sustainability Challenges. Challenges, 2020, 11, 21.	1.7	6
176	Johanna Westerdijk (1881–1961) – the impact of the grand lady of phytopathology in the Netherlands from 1917 to 2017. European Journal of Plant Pathology, 2019, 154, 11-16.	1.7	5
177	Plant-Beneficial <i>Pseudomonas</i> Spp. Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. SSRN Electronic Journal, 0, , .	0.4	5
178	Induced Resistance– Orchestrating Defence Mechanisms through Crosstalk and Priming. , 0, , 334-370.		4
179	Editorial: Beneficial Microbiota Interacting With the Plant Immune System. Frontiers in Plant Science, 2021, 12, 698902.	3.6	3
180	Rapid Evolution of Plant-Bacterium Mutualism in the Rhizosphere. SSRN Electronic Journal, 0, , .	0.4	3

#	Article	IF	CITATIONS
181	Soil-Borne Legacies of Disease in Arabidopsis thaliana. Methods in Molecular Biology, 2021, 2232, 209-218.	0.9	3
182	Collection of Sterile Root Exudates from Foliar Pathogen-Inoculated Plants. Methods in Molecular Biology, 2021, 2232, 305-317.	0.9	3
183	Editorial: New Horizons in Food Science via Agricultural Immunity. Frontiers in Nutrition, 2020, 7, 19.	3.7	1
184	Bioassays to Evaluate the Resistance of Whole Plants to the Herbivorous Insect Thrips. Methods in Molecular Biology, 2020, 2085, 93-108.	0.9	1
185	Title is missing!. European Journal of Plant Pathology, 1998, 104, 223-223.	1.7	0