
Linda M Hendershot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5016033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice. JCI Insight, 2022, 7, .	5.0	11
2	Secretory defects in pediatric osteosarcoma result from downregulation of selective COPII coatomer proteins. IScience, 2022, 25, 104100.	4.1	2
3	Mapping SP-C co-chaperone binding sites reveals molecular consequences of disease-causing mutations on protein maturation. Nature Communications, 2022, 13, 1821.	12.8	8
4	Reshaping endoplasmic reticulum quality control through the unfolded protein response. Molecular Cell, 2022, 82, 1477-1491.	9.7	105
5	The Molecular Chaperone, GRP170, Protects Against Acute Kidney Injury and ER Stress in Mice. FASEB Journal, 2022, 36, .	0.5	0
6	Protein Folding Protein Folding in the Endoplasmic Reticulum. , 2021, , 127-139.		1
7	Role of the HSP70 Co-Chaperone SIL1 in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 1564.	4.1	7
8	First Virtual International Congress on Cellular and Organismal Stress Responses, November 5–6, 2020. Cell Stress and Chaperones, 2021, 26, 289-295.	2.9	0
9	Disposing of misfolded ER proteins: A troubled substrate's way out of the ER. Molecular and Cellular Endocrinology, 2020, 500, 110630.	3.2	46
10	The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. Journal of Biological Chemistry, 2019, 294, 2098-2108.	3.4	265
11	SIL1, the ER Hsp70 co-chaperone, plays a critical role in maintaining skeletal muscle proteostasis and physiology. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	13
12	The Noncanonical Role of ULK/ATG1 in ER-to-Golgi Trafficking Is Essential for Cellular Homeostasis. Molecular Cell, 2016, 62, 491-506.	9.7	148
13	Members of the Hsp70 Family Recognize Distinct Types of Sequences to Execute ER Quality Control. Molecular Cell, 2016, 63, 739-752.	9.7	107
14	Dimerization-dependent Folding Underlies Assembly Control of the Clonotypic αβT Cell Receptor Chains. Journal of Biological Chemistry, 2015, 290, 26821-26831.	3.4	20
15	Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker. ELife, 2015, 4, e08961.	6.0	55
16	BiP and Its Nucleotide Exchange Factors Grp170 and Sil1: Mechanisms of Action and Biological Functions. Journal of Molecular Biology, 2015, 427, 1589-1608.	4.2	164
17	Sil1, a nucleotide exchange factor for BiP, is not required for antibody assembly or secretion. Molecular Biology of the Cell, 2015, 26, 420-429.	2.1	15
18	The Large Hsp70 Grp170 Binds to Unfolded Protein Substrates in Vivo with a Regulation Distinct from Conventional Hsp70s. Journal of Biological Chemistry, 2014, 289, 2899-2907.	3.4	49

Linda M Hendershot

#	Article	IF	CITATIONS
19	Endoplasmic Reticulum (ER) Stress and Hypoxia Response Pathways Interact to Potentiate Hypoxia-inducible Factor 1 (HIF-1) Transcriptional Activity on Targets Like Vascular Endothelial Growth Factor (VEGF). Journal of Biological Chemistry, 2014, 289, 3352-3364.	3.4	164
20	Herp coordinates compartmentalization and recruitment of HRD1 and misfolded proteins for ERAD. Molecular Biology of the Cell, 2014, 25, 1050-1060.	2.1	64
21	The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8155-8160.	7.1	67
22	Dissection of Structural and Functional Requirements That Underlie the Interaction of ERdj3 Protein with Substrates in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2014, 289, 27504-27512.	3.4	17
23	Quality Control of Integral Membrane Proteins by Assembly-Dependent Membrane Integration. Molecular Cell, 2013, 51, 297-309.	9.7	80
24	Examination of a second node of translational control in the unfolded protein response. Journal of Cell Science, 2013, 126, 4253-61.	2.0	19
25	Acidification Activates ERp44—A Molecular Litmus Test for Protein Assembly. Molecular Cell, 2013, 50, 779-781.	9.7	1
26	A Shared Endoplasmic Reticulum-associated Degradation Pathway Involving the EDEM1 Protein for Glycosylated and Nonglycosylated Proteins. Journal of Biological Chemistry, 2013, 288, 2167-2178.	3.4	54
27	ERdj4 Protein Is a Soluble Endoplasmic Reticulum (ER) DnaJ Family Protein That Interacts with ER-associated Degradation Machinery. Journal of Biological Chemistry, 2012, 287, 7969-7978.	3.4	70
28	C-terminal Mutations Destabilize SIL1/BAP and Can Cause Marinesco-Sjögren Syndrome. Journal of Biological Chemistry, 2012, 287, 8552-8560.	3.4	32
29	UPR-Induced Resistance to Etoposide Is Downstream of PERK and Independent of Changes in Topoisomerase IIα Levels. PLoS ONE, 2012, 7, e47931.	2.5	7
30	UPR Activation in Cancer Cells: A Double-Edged Sword. , 2012, , 383-412.		1
31	FCRLA is a resident endoplasmic reticulum protein that associates with intracellular Igs, IgM, IgG and IgA. International Immunology, 2011, 23, 43-53.	4.0	30
32	Disulfide bonds in ER protein folding and homeostasis. Current Opinion in Cell Biology, 2011, 23, 167-175.	5.4	150
33	Intra-Golgi Formation of IgM–Glycosaminoglycan Complexes Promotes Ig Deposition. Journal of Immunology, 2011, 187, 3198-3207.	0.8	6
34	Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress and Chaperones, 2010, 15, 281-293.	2.9	122
35	How antibodies fold. Trends in Biochemical Sciences, 2010, 35, 189-198.	7.5	174
36	Response to Corcos: exceptions to the rules. Trends in Biochemical Sciences, 2010, 35, 594.	7.5	0

LINDA M HENDERSHOT

#	Article	IF	CITATIONS
37	Transcriptional and Post-Transcriptional Regulation of Proangiogenic Factors by the Unfolded Protein Response. PLoS ONE, 2010, 5, e12521.	2.5	128
38	J Domain Co-chaperone Specificity Defines the Role of BiP during Protein Translocation. Journal of Biological Chemistry, 2010, 285, 22484-22494.	3.4	43
39	Ubiquitylation of an ERAD Substrate Occurs on Multiple Types of Amino Acids. Molecular Cell, 2010, 40, 917-926.	9.7	117
40	CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells. Molecular Immunology, 2010, 47, 1356-1365.	2.2	56
41	Life and death of a BiP substrate. Seminars in Cell and Developmental Biology, 2010, 21, 472-478.	5.0	165
42	Protein Quality Control in the Endoplasmic Reticulum. , 2010, , 2471-2476.		0
43	Oxidative Folding: Cellular Strategies for Dealing with the Resultant Equimolar Production of Reactive Oxygen Species. Antioxidants and Redox Signaling, 2009, 11, 2317-2331.	5.4	124
44	pERp1 is significantly up-regulated during plasma cell differentiation and contributes to the oxidative folding of immunoglobulin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17013-17018.	7.1	55
45	The Mammalian Hsp40 ERdj3 Requires Its Hsp70 Interaction and Substrate-binding Properties to Complement Various Yeast Hsp40-dependent Functions. Journal of Biological Chemistry, 2009, 284, 32462-32471.	3.4	19
46	ERdj3, a Luminal ER DnaJ Homologue, Binds Directly to Unfolded Proteins in the Mammalian ER: Identification of Critical Residues. Biochemistry, 2009, 48, 41-49.	2.5	64
47	An Unfolded CH1 Domain Controls the Assembly and Secretion of IgG Antibodies. Molecular Cell, 2009, 34, 569-579.	9.7	209
48	Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. EMBO Journal, 2008, 27, 2862-2872.	7.8	122
49	Regulated release of ERdj3 from unfolded proteins by BiP. EMBO Journal, 2008, 27, 2873-2882.	7.8	71
50	BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1164-1169.	7.1	61
51	Transcriptional Regulation of the Endoplasmic Reticulum Stress Gene Chop in Pancreatic Insulin-Producing Cells. Diabetes, 2007, 56, 1069-1077.	0.6	86
52	Identification of <i>ERdj3</i> and <i>OBF-1/BOB-1/OCA-B</i> as Direct Targets of XBP-1 during Plasma Cell Differentiation. Journal of Immunology, 2007, 179, 2969-2978.	0.8	29
53	Characterization of an ERAD Pathway for Nonglycosylated BiP Substrates, which Require Herp. Molecular Cell, 2007, 28, 544-554.	9.7	193
54	Organization of the Functions and Components of the Endoplasmic Reticulum. , 2007, 594, 37-46.		31

Linda M Hendershot

#	Article	IF	CITATIONS
55	Unfolded Protein Response: Contributions to Development and Disease. , 2007, , 57-88.		2
56	UPR activation alters chemosensitivity of tumor cells. Cancer Biology and Therapy, 2006, 5, 736-740.	3.4	52
57	ER stress and cancer. Cancer Biology and Therapy, 2006, 5, 721-722.	3.4	83
58	ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nature Structural and Molecular Biology, 2005, 12, 1008-1014.	8.2	83
59	Mutations in SIL1 cause Marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nature Genetics, 2005, 37, 1312-1314.	21.4	232
60	Building an antibody factory: a job for the unfolded protein response. Nature Immunology, 2005, 6, 23-29.	14.5	103
61	ERdj3, a Stress-inducible Endoplasmic Reticulum DnaJ Homologue, Serves as a CoFactor for BiP's Interactions with Unfolded Substrates. Molecular Biology of the Cell, 2005, 16, 40-50.	2.1	179
62	The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. Journal of Cell Biology, 2005, 168, 389-399.	5.2	159
63	Activation of the Unfolded Protein Response Is Necessary and Sufficient for Reducing Topoisomerase IIα Protein Levels and Decreasing Sensitivity to Topoisomerase-Targeted Drugs. Molecular Pharmacology, 2005, 68, 1699-1707.	2.3	35
64	Herp Is Dually Regulated by Both the Endoplasmic Reticulum Stress-specific Branch of the Unfolded Protein Response and a Branch That Is Shared with Other Cellular Stress Pathways. Journal of Biological Chemistry, 2004, 279, 13792-13799.	3.4	141
65	The role of the unfolded protein response in tumour development: friend or foe?. Nature Reviews Cancer, 2004, 4, 966-977.	28.4	668
66	ER chaperone functions during normal and stress conditions. Journal of Chemical Neuroanatomy, 2004, 28, 51-65.	2.1	365
67	GM1-Ganglioside-Mediated Activation of the Unfolded Protein Response Causes Neuronal Death in a Neurodegenerative Gangliosidosis. Molecular Cell, 2004, 15, 753-766.	9.7	208
68	Immunoglobulin Assembly and Secretion. , 2004, , 261-273.		24
69	The ER function BiP is a master regulator of ER function. Mount Sinai Journal of Medicine, 2004, 71, 289-97.	1.9	247
70	The stressful road to antibody secretion. Nature Immunology, 2003, 4, 310-311.	14.5	46
71	Delineation of a Negative Feedback Regulatory Loop That Controls Protein Translation during Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2003, 278, 34864-34873.	3.4	380
72	BAP, a Mammalian BiP-associated Protein, Is a Nucleotide Exchange Factor That Regulates the ATPase Activity of BiP. Journal of Biological Chemistry, 2002, 277, 47557-47563.	3.4	164

LINDA M HENDERSHOT

#	Article	IF	CITATIONS
73	Identification and Characterization of a Novel Endoplasmic Reticulum (ER) DnaJ Homologue, Which Stimulates ATPase Activity of BiP in Vitro and Is Induced by ER Stress. Journal of Biological Chemistry, 2002, 277, 15947-15956.	3.4	188
74	A Subset of Chaperones and Folding Enzymes Form Multiprotein Complexes in Endoplasmic Reticulum to Bind Nascent Proteins. Molecular Biology of the Cell, 2002, 13, 4456-4469.	2.1	481
75	Heat Shock Protein 90 Modulates the Unfolded Protein Response by Stabilizing IRE1α. Molecular and Cellular Biology, 2002, 22, 8506-8513.	2.3	229
76	Two Distinct Stress Signaling Pathways Converge Upon the CHOP Promoter During the Mammalian Unfolded Protein Response. Journal of Molecular Biology, 2002, 318, 1351-1365.	4.2	605
77	ER Stress Regulation of ATF6 Localization by Dissociation of BiP/GRP78 Binding and Unmasking of Golgi Localization Signals. Developmental Cell, 2002, 3, 99-111.	7.0	1,202
78	&cestchinlongThe mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress and Chaperones, 2002, 7, 222.	2.9	78
79	Unassembled Ig Heavy Chains Do Not Cycle from BiP In Vivo but Require Light Chains to Trigger Their Release. Immunity, 2001, 15, 105-114.	14.3	108
80	The Unfolding Tale of the Unfolded Protein Response. Cell, 2001, 107, 827-830.	28.9	369
81	Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology, 2000, 2, 326-332.	10.3	2,397
82	Giving protein traffic the green light. Nature Cell Biology, 2000, 2, E105-E106.	10.3	13
83	Protein-specific chaperones: The role of hsp47 begins to gel. Current Biology, 2000, 10, R912-R915.	3.9	47
84	Binding of BiP to the Processing Enzyme Lymphoma Proprotein Convertase Prevents Aggregation, but Slows Down Maturation. Journal of Biological Chemistry, 2000, 275, 38842-38847.	3.4	24
85	The In Vivo Association of BiP with Newly Synthesized Proteins Is Dependent on the Rate and Stability of Folding and Not Simply on the Presence of Sequences That Can Bind to BiP. Journal of Cell Biology, 1999, 144, 21-30.	5.2	68
86	BiP and Immunoglobulin Light Chain Cooperate to Control the Folding of Heavy Chain and Ensure the Fidelity of Immunoglobulin Assembly. Molecular Biology of the Cell, 1999, 10, 2209-2219.	2.1	174
87	Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8505-8510.	7.1	248
88	Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. Journal of Cellular Physiology, 1998, 174, 170-179.	4.1	90
89	BiP Maintains the Permeability Barrier of the ER Membrane by Sealing the Lumenal End of the Translocon Pore before and Early in Translocation. Cell, 1998, 92, 747-758.	28.9	395
90	Geldanamycin, an hsp90/GRP94â€binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. Journal of Cellular Physiology, 1998, 174, 170-179.	4.1	1

#	Article	IF	CITATIONS
91	BiP, a Major Chaperone Protein of the Endoplasmic Reticulum Lumen, Plays a Direct and Important Role in the Storage of the Rapidly Exchanging Pool of Ca2+. Journal of Biological Chemistry, 1997, 272, 30873-30879.	3.4	241
92	Immunoglobulin Binding Protein (BiP) Function Is Required to Protect Cells from Endoplasmic Reticulum Stress but Is Not Required for the Secretion of Selective Proteins. Journal of Biological Chemistry, 1997, 272, 4327-4334.	3.4	313
93	Characterization of the Nucleotide Binding Properties and ATPase Activity of Recombinant Hamster BiP Purified from Bacteria. Journal of Biological Chemistry, 1995, 270, 26670-26676.	3.4	82
94	In Vitro Dissociation of BiP-Peptide Complexes Requires a Conformational Change in BiP after ATP Binding but Does Not Require ATP Hydrolysis. Journal of Biological Chemistry, 1995, 270, 26677-26682.	3.4	133
95	Localization of the Gene Encoding Human BiP/GRP78, the Endoplasmic Reticulum Cognate of the HSP70 Family, to Chromosome 9q34. Genomics, 1994, 20, 281-284.	2.9	87
96	The modification and assembly of proteins in the endoplasmic reticulum. Current Opinion in Cell Biology, 1993, 5, 589-595.	5.4	141
97	Differences in Human B Cell Differentiation. Advances in Experimental Medicine and Biology, 1991, 292, 215-226.	1.6	2
98	Association of transport-defective light chains with immunoglobulin heavy chain binding protein. Molecular Immunology, 1990, 27, 623-630.	2.2	37
99	A role for human heavy chain binding protein in the developmental regulation of immunoglobin transport. Molecular Immunology, 1988, 25, 585-595.	2.2	39
100	Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein Journal of Cell Biology, 1987, 104, 761-767.	5.2	334
101	The role of immunoglobulin heavy chain binding protein. Trends in Immunology, 1987, 8, 111-114.	7.5	46
102	Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas Journal of Cell Biology, 1986, 102, 1558-1566.	5.2	936
103	The effects of glycosylation inhibitors on the maturation and intracellular polypeptide synthesis induced by snowshoe hare bunyavirus. Virology, 1980, 103, 235-240.	2.4	29