
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015389/publications.pdf Version: 2024-02-01

M/CKUDTU

#	Article	IF	CITATIONS
1	Properties of Ionâ€Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
2	A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint. Geophysical Research Letters, 2022, 49, .	4.0	8
3	Determining the Beaming of Io Decametric Emissions: A Remote Diagnostic to Probe the Ioâ€Jupiter Interaction. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	7
4	Closed Fluxtubes and Dispersive Proton Conics at Jupiter's Polar Cap. Geophysical Research Letters, 2022, 49, .	4.0	7
5	Loss of Energetic Ions Comprising the Ring Current Populations of Jupiter's Middle and Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
6	Quantifying the Sheath Impedance of the Electric Double Probe Instrument on the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	10
7	Juno Plasma Wave Observations at Ganymede. Geophysical Research Letters, 2022, 49, .	4.0	13
8	Shocks in the Very Local Interstellar Medium. Space Science Reviews, 2022, 218, 27.	8.1	13
9	Power Line Harmonic Radiation Observed by the Van Allen Probes Spacecraft. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
10	Observations of the Outer Heliosphere, Heliosheath, and Interstellar Medium. Space Science Reviews, 2022, 218, .	8.1	21
11	Alpha Transmitter Signals Observed by the Van Allen Probes: Ducted Versus Nonducted Propagation. Geophysical Research Letters, 2022, 49, .	4.0	0
12	Magnetic Field Observations in the Very Local Interstellar Medium by Voyagers 1 and 2. Astrophysical Journal, 2022, 932, 59.	4.5	11
13	Plasma Observations During the 7 June 2021 Ganymede Flyby From the Jovian Auroral Distributions Experiment (JADE) on Juno. Geophysical Research Letters, 2022, 49, .	4.0	16
14	Juno Observations of Ionâ€Inertial Scale Flux Ropes in the Jovian Magnetotail. Geophysical Research Letters, 2021, 48, e2020GL089721.	4.0	3
15	Low‣atitude Whistlerâ€Mode and Higher‣atitude Zâ€Mode Emission at Jupiter Observed by Juno. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028742.	2.4	10
16	Multipoint Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028484.	2.4	4
17	Are Dawn Storms Jupiter's Auroral Substorms?. AGU Advances, 2021, 2, e2020AV000275.	5.4	25
18	Simultaneous Observation of an Auroral Dawn Storm With the Hubble Space Telescope and Juno. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028717.	2.4	6

#	Article	IF	CITATIONS
19	Compression algorithms for high-data-volume instruments on planetary missions: a case study for the Cassini mission. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7, .	1.8	1
20	Magnetic Field and Plasma Density Observations of a Pressure Front by Voyager 1 during 2020 in the Very Local Interstellar Medium. Astrophysical Journal, 2021, 911, 61.	4.5	24
21	Persistent plasma waves in interstellar space detected by Voyager 1. Nature Astronomy, 2021, 5, 761-765.	10.1	20
22	Observations and Simulations of Dropout Events and Flux Decays in October 2013: Comparing MEO Equatorial With LEO Polar Orbit. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028850.	2.4	21
23	Revealing the source of Jupiter's x-ray auroral flares. Science Advances, 2021, 7, .	10.3	25
24	The High‣atitude Extension of Jupiter's Io Torus: Electron Densities Measured by Juno Waves. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029195.	2.4	12
25	Global Survey of Electron Precipitation due to Hiss Waves in the Earth's Plasmasphere and Plumes. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029644.	2.4	23
26	Inferring Jovian Electron Densities Using Plasma Wave Spectra Obtained by the Juno/Waves Instrument. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029263.	2.4	9
27	Fieldâ€Aligned Electron Density Distribution of the Inner Magnetosphere Inferred From Coordinated Observations of Arase and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029073.	2.4	3
28	Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095457.	4.0	12
29	Electron Partial Density and Temperature Over Jupiter's Main Auroral Emission Using Juno Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029426.	2.4	11
30	Juno Waves High Frequency Antenna Properties. Radio Science, 2021, 56, e2020RS007184.	1.6	2
31	Interâ€Calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029700.	2.4	6
32	A Preliminary Study of Magnetosphereâ€lonosphereâ€Thermosphere Coupling at Jupiter: Juno Multiâ€Instrument Measurements and Modeling Tools. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029469.	2.4	11
33	Statistical Study on Spatial Distribution and Polarization of Saturn Narrowband Emissions. Astrophysical Journal, 2021, 918, 64.	4.5	8
34	The Faraday rotation effect in Saturn Kilometric Radiation observed by the CASSINI spacecraft. Icarus, 2021, 370, 114661.	2.5	0
35	A Foreshock Model for Interstellar Shocks of Solar Origin: Voyager 1 and 2 Observations. Astronomical Journal, 2021, 161, 11.	4.7	21
36	Origin of the Weak Plasma Emission Line Detected by Voyager 1 in the Interstellar Medium: Evidence for Suprathermal Electrons. Astrophysical Journal, 2021, 921, 62.	4.5	10

#	Article	IF	CITATIONS
37	Simultaneous UV Images and Highâ€Latitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029679.	2.4	3
38	Analysis of Whistlerâ€Mode and Zâ€Mode Emission in the Juno Primary Mission. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029885.	2.4	5
39	Quasilinear model of Jovian whistler mode emission. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029930.	2.4	1
40	Early-Time Non-Equilibrium Pitch Angle Diffusion of Electrons by Whistler-Mode Hiss in a Plasmaspheric Plume Associated with BARREL Precipitation. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	6
41	The Jovian Ionospheric Alfvén Resonator and Auroral Particle Acceleration. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	14
42	Energetic Electron Distributions Near the Magnetic Equator in the Jovian Plasma Sheet and Outer Radiation Belt Using Juno Observations. Geophysical Research Letters, 2021, 48, .	4.0	6
43	Phase Decoherence Within Intense Chorus Wave Packets Constrains the Efficiency of Nonlinear Resonant Electron Acceleration. Geophysical Research Letters, 2020, 47, e2020GL089807.	4.0	48
44	Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth's Magnetosphere. Geophysical Research Letters, 2020, 47, e2020GL088798.	4.0	28
45	Periodic Narrowband Radio Wave Emissions and Inward Plasma Transport at Saturn's Magnetosphere. Astronomical Journal, 2020, 159, 249.	4.7	12
46	Ganymedeâ€Induced Decametric Radio Emission: In Situ Observations and Measurements by Juno. Geophysical Research Letters, 2020, 47, e2020GL090021.	4.0	10
47	Waveâ€Particle Interactions Associated With Io's Auroral Footprint: Evidence of Alfvén, Ion Cyclotron, and Whistler Modes. Geophysical Research Letters, 2020, 47, e2020GL088432.	4.0	34
48	Rapid Frequency Variations Within Intense Chorus Wave Packets. Geophysical Research Letters, 2020, 47, e2020GL088853.	4.0	37
49	Highâ€Spatiotemporal Resolution Observations of Jupiter Lightningâ€Induced Radio Pulses Associated With Sferics and Thunderstorms. Geophysical Research Letters, 2020, 47, e2020GL088397.	4.0	3
50	An Enhancement of Jupiter's Main Auroral Emission and Magnetospheric Currents. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027904.	2.4	13
51	Nondetection of Radio Emissions From Titan Lightning by Cassini RPWS. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006496.	3.6	1
52	First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno. Geophysical Research Letters, 2020, 47, e2020GL089732.	4.0	17
53	The Generation of Upwardâ€Propagating Whistler Mode Waves by Electron Beams in the Jovian Polar Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027868.	2.4	11
54	Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027699.	2.4	47

#	Article	IF	CITATIONS
55	Global Distribution of Whistler Mode Waves in Jovian Inner Magnetosphere. Geophysical Research Letters, 2020, 47, e2020GL088198.	4.0	16
56	Plasma Sheet Boundary Layer in Jupiter's Magnetodisk as Observed by Juno. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027957.	2.4	7
57	Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027509.	2.4	4
58	Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027693.	2.4	37
59	Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027486.	2.4	21
60	Conjugate Observations of Quasiperiodic Emissions by the Van Allen Probes Spacecraft and Groundâ€Based Station Kannuslehto. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027793.	2.4	9
61	Juno Waves Detection of Dust Impacts Near Jupiter. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006367.	3.6	8
62	Juno Reveals New Insights Into Ioâ€Related Decameter Radio Emissions. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006415.	3.6	4
63	Alfvénic Acceleration Sustains Ganymede's Footprint Tail Aurora. Geophysical Research Letters, 2020, 47, e2019GL086527.	4.0	25
64	Determining Plasmaspheric Density From the Upper Hybrid Resonance and From the Spacecraft Potential: How Do They Compare?. Journal of Geophysical Research: Space Physics, 2020, 125, no.	2.4	10
65	Distribution in Saturn's Inner Magnetosphere From 2.4 to 10 R _S : A Diffusive Equilibrium Model. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027545.	2.4	9
66	Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027918.	2.4	5
67	Quasiperiodic Saturn Auroral Hiss Observed During a Cassini Proximal Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027338.	2.4	5
68	How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm. Journal of Physics: Conference Series, 2020, 1623, 012005.	0.4	8
69	Oxygen torus and its coincidence with EMIC wave in the deep inner magnetosphere: Van Allen Probe B and Arase observations. Earth, Planets and Space, 2020, 72, 111.	2.5	17
70	Observations of a Radial Density Gradient in the Very Local Interstellar Medium by Voyager 2. Astrophysical Journal Letters, 2020, 900, L1.	8.3	15
71	Evidence of Electron Density Enhancements in the Postâ€Apoapsis Sector of Enceladus' Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, .	2.4	0
72	Survey of Saturn Whistler Mode Hiss Intensity. Journal of Geophysical Research: Space Physics, 2019, 124, 4266-4277.	2.4	6

#	Article	IF	CITATIONS
73	A Persistent, Large cale, and Ordered Electrodynamic Connection Between Saturn and Its Main Rings. Geophysical Research Letters, 2019, 46, 7166-7172.	4.0	2
74	Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates. Geophysical Research Letters, 2019, 46, 7182-7190.	4.0	53
75	Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 2019, 3, 904-909.	10.1	40
76	Origin of two-band chorus in the radiation belt of Earth. Nature Communications, 2019, 10, 4672.	12.8	52
77	On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 2019, 46, 11632-11641.	4.0	32
78	Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments. Nature Astronomy, 2019, 3, 1024-1028.	10.1	63
79	Solar Wind Interaction With Jupiter's Magnetosphere: A Statistical Study of Galileo In Situ Data and Modeled Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, 2019, 124, 10170-10199.	2.4	19
80	Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere. Geophysical Research Letters, 2019, 46, 8607-8616.	4.0	17
81	Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts. Geophysical Research Letters, 2019, 46, 10941-10950.	4.0	18
82	Temperature Dependence of Plasmaspheric Ion Composition. Journal of Geophysical Research: Space Physics, 2019, 124, 6585-6595.	2.4	16
83	The Role of Intense Upper Hybrid Resonance Emissions in the Generation of Saturn Narrowband Emission. Journal of Geophysical Research: Space Physics, 2019, 124, 5709-5718.	2.4	7
84	Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes. Journal of Geophysical Research: Space Physics, 2019, 124, 1035-1051.	2.4	37
85	Analysis of a long-lived, two-cell lightning storm on Saturn. Astronomy and Astrophysics, 2019, 621, A113.	5.1	4
86	Epochâ€Based Model for Stormtime Plasmapause Location. Journal of Geophysical Research: Space Physics, 2019, 124, 4462-4491.	2.4	16
87	Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere. Geophysical Research Letters, 2019, 46, 6258-6267.	4.0	48
88	Evidence for low density holes in Jupiter's ionosphere. Nature Communications, 2019, 10, 2751.	12.8	4
89	Solar Rotation Period Driven Modulations of Plasmaspheric Density and Convective Electric Field in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1726-1737.	2.4	6
90	Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss. Geophysical Research Letters, 2019, 46, 3615-3624.	4.0	37

#	Article	IF	CITATIONS
91	Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity. Journal of Geophysical Research: Space Physics, 2019, 124, 2466-2483.	2.4	50
92	Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno. Geophysical Research Letters, 2019, 46, 571-579.	4.0	10
93	Saturn's Dusty Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1679-1697.	2.4	27
94	Jovian Auroral Radio Sources Detected In Situ by Juno/Waves: Comparisons With Model Auroral Ovals and Simultaneous HST FUV Images. Geophysical Research Letters, 2019, 46, 11606-11614.	4.0	15
95	Global Survey and Empirical Model of Fast Magnetosonic Waves Over Their Full Frequency Range in Earth's Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 10270-10282.	2.4	19
96	Survey of Jupiter's Dawn Magnetosheath Using Juno. Journal of Geophysical Research: Space Physics, 2019, 124, 9106-9123.	2.4	16
97	Parallel Acceleration of Suprathermal Electrons Caused by Whistlerâ€Mode Hiss Waves. Geophysical Research Letters, 2019, 46, 12675-12684.	4.0	16
98	The Ion Composition of Saturn's Equatorial Ionosphere as Observed by Cassini. Geophysical Research Letters, 2019, 46, 6315-6321.	4.0	22
99	Electron Density Distributions in Saturn's Ionosphere. Geophysical Research Letters, 2019, 46, 3061-3068.	4.0	27
100	Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. Geophysical Research Letters, 2019, 46, 19-27.	4.0	18
101	Observations and Fokkerâ€Planck Simulations of the <i>L</i> â€Shell, Energy, and Pitch Angle Structure of Earth's Electron Radiation Belts During Quiet Times. Journal of Geophysical Research: Space Physics, 2019, 124, 1125-1142.	2.4	37
102	Saturn's Ionosphere: Electron Density Altitude Profiles and Dâ€Ring Interaction From The Cassini Grand Finale. Geophysical Research Letters, 2019, 46, 9362-9369.	4.0	20
103	Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events. Journal of Geophysical Research: Space Physics, 2018, 123, 1938-1952.	2.4	86
104	Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves. Geophysical Research Letters, 2018, 45, 1246-1252.	4.0	17
105	Solar Wind Properties During Juno's Approach to Jupiter: Data Analysis and Resulting Plasma Properties Utilizing a 1â€D Forward Model. Journal of Geophysical Research: Space Physics, 2018, 123, 2772-2786.	2.4	15
106	Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora. Geophysical Research Letters, 2018, 45, 1277-1285.	4.0	49
107	First Observation of Lion Roar Emission in Saturn's Magnetosheath. Geophysical Research Letters, 2018, 45, 486-492.	4.0	5
108	The Dusty Plasma Disk Around the Janus/Epimetheus Ring. Journal of Geophysical Research: Space Physics, 2018, 123, 4668-4678.	2.4	8

#	Article	IF	CITATIONS
109	Lowâ€Frequency Extensions of the Saturn Kilometric Radiation as a Proxy for Magnetospheric Dynamics. Journal of Geophysical Research: Space Physics, 2018, 123, 443-463.	2.4	22
110	Analysis of Intense <i>Z</i> â€Mode Emission Observed During the Cassini Proximal Orbits. Geophysical Research Letters, 2018, 45, 6766-6772.	4.0	8
111	Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7. Journal of Geophysical Research: Space Physics, 2018, 123, 3299-3319.	2.4	53
112	Energetic electron measurements near Enceladus by Cassini during 2005–2015. Icarus, 2018, 306, 256-274.	2.5	4
113	Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications. Icarus, 2018, 300, 47-71.	2.5	31
114	In situ measurements of Saturn's ionosphere show that it is dynamic and interacts with the rings. Science, 2018, 359, 66-68.	12.6	40
115	Van Allen Probes observation of plasmaspheric hiss modulated by injected energetic electrons. Annales Geophysicae, 2018, 36, 781-791.	1.6	7
116	Precipitating Electron Energy Flux and Characteristic Energies in Jupiter's Main Auroral Region as Measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 2018, 123, 7554-7567.	2.4	42
117	Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 10,101.	4.0	16
118	Saturn's Northern Aurorae at Solstice From HST Observations Coordinated With Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 9353-9362.	4.0	24
119	An SLS5 Longitude System Based on the Rotational Modulation of Saturn Radio Emissions. Geophysical Research Letters, 2018, 45, 7297-7305.	4.0	13
120	The Mysterious Periodicities of Saturn. , 2018, , 97-125.		3
121	Formation of electron radiation belts at Saturn by Z-mode wave acceleration. Nature Communications, 2018, 9, 5062.	12.8	29
122	Simulations of Van Allen Probes Plasmaspheric Electron Density Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 9453-9475.	2.4	8
123	Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A. Geophysical Research Letters, 2018, 45, 10,177.	4.0	18
124	Equatorial Noise With Quasiperiodic Modulation: Multipoint Observations by the Van Allen Probes Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 4809-4819.	2.4	4
125	The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Waveâ€Particle Interactions. Journal of Geophysical Research: Space Physics, 2018, 123, 7523-7533.	2.4	21
126	Auroral Storm and Polar Arcs at Saturn—Final Cassini/UVIS Auroral Observations. Geophysical Research Letters, 2018, 45, 6832-6842.	4.0	10

#	Article	IF	CITATIONS
127	The low-frequency source of Saturn's kilometric radiation. Science, 2018, 362, .	12.6	22
128	Dust grains fall from Saturn's D-ring into its equatorial upper atmosphere. Science, 2018, 362, .	12.6	37
129	Chemical interactions between Saturn's atmosphere and its rings. Science, 2018, 362, .	12.6	73
130	In situ collection of dust grains falling from Saturn's rings into its atmosphere. Science, 2018, 362, .	12.6	44
131	Ring Shadowing Effects on Saturn's Ionosphere: Implications for Ring Opacity and Plasma Transport. Geophysical Research Letters, 2018, 45, 10,084.	4.0	17
132	In Situ Observations Connected to the Io Footprint Tail Aurora. Journal of Geophysical Research E: Planets, 2018, 123, 3061-3077.	3.6	48
133	Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 8969-8982.	2.4	18
134	Juno Constraints on the Formation of Jupiter's Magnetospheric Cushion Region. Geophysical Research Letters, 2018, 45, 9427-9434.	4.0	6
135	Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter. Geophysical Research Letters, 2018, 45, 9372-9379.	4.0	21
136	The Cassini RPWS/LP Observations of Dusty Plasma in the Kronian System. Proceedings of the International Astronomical Union, 2018, 14, 415-416.	0.0	0
137	Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nature Astronomy, 2018, 2, 459-464.	10.1	164
138	Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes. Geophysical Research Letters, 2018, 45, 9408-9416.	4.0	19
139	Saturn's Plasma Density Depletions Along Magnetic Field Lines Connected to the Main Rings. Geophysical Research Letters, 2018, 45, 8104-8110.	4.0	6
140	Extended Survey of Saturn Zâ€Mode Wave Intensity Through Cassini's Final Orbits. Geophysical Research Letters, 2018, 45, 7330-7336.	4.0	7
141	Longitudinal Dependence of Whistler Mode Electromagnetic Waves in the Earth's Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 6562-6575.	2.4	13
142	Auroral Hiss Emissions During Cassini's Grand Finale: Diverse Electrodynamic Interactions Between Saturn and Its Rings. Geophysical Research Letters, 2018, 45, 6782-6789.	4.0	8
143	Enceladus Auroral Hiss Emissions During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 7347-7353.	4.0	16
144	Jupiter Lightningâ€Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves. Geophysical Research Letters, 2018, 45, 7268-7276.	4.0	11

#	Article	IF	CITATIONS
145	Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements. Geophysical Research Letters, 2018, 45, 6755-6765.	4.0	29
146	Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss. Journal of Geophysical Research: Space Physics, 2018, 123, 6679-6691.	2.4	13
147	Cassini RPWS Dust Observation Near the Janus/Epimetheus Orbit. Journal of Geophysical Research: Space Physics, 2018, 123, 4952-4960.	2.4	9
148	Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nature Astronomy, 2018, 2, 544-548.	10.1	27
149	Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature, 2018, 558, 87-90.	27.8	52
150	Properties of Intense Fieldâ€Aligned Lowerâ€Band Chorus Waves: Implications for Nonlinear Waveâ€Particle Interactions. Journal of Geophysical Research: Space Physics, 2018, 123, 5379-5393.	2.4	62
151	Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales. Journal of Geophysical Research: Space Physics, 2017, 122, 1871-1882.	2.4	12
152	"Zipperâ€like―periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1600-1610.	2.4	12
153	Whistler mode waves upstream of Saturn. Journal of Geophysical Research: Space Physics, 2017, 122, 227-234.	2.4	4
154	An improved sheath impedance model for the Van Allen Probes EFW instrument: Effects of the spin axis antenna. Journal of Geophysical Research: Space Physics, 2017, 122, 4420-4429.	2.4	24
155	Effects of whistler mode hiss waves in March 2013. Journal of Geophysical Research: Space Physics, 2017, 122, 7433-7462.	2.4	50
156	Ioâ€Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations. Geophysical Research Letters, 2017, 44, 9225-9232.	4.0	22
157	Statistical study of latitudinal beaming of Jupiter's decametric radio emissions using Juno. Geophysical Research Letters, 2017, 44, 4584-4590.	4.0	7
158	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	12.6	109
159	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
160	Plasma waves in Jupiter's highâ€latitude regions: Observations from the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4447-4454.	4.0	27
161	Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 2017, 44, 7122-7130.	4.0	35
162	Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter. Geophysical Research Letters, 2017, 44, 4432-4438.	4.0	24

#	Article	IF	CITATIONS
163	Hot flow anomaly observed at Jupiter's bow shock. Geophysical Research Letters, 2017, 44, 8107-8112.	4.0	17
164	A heavy ion and proton radiation belt inside of Jupiter's rings. Geophysical Research Letters, 2017, 44, 5259-5268.	4.0	28
165	Generation of the Jovian hectometric radiation: First lessons from Juno. Geophysical Research Letters, 2017, 44, 4439-4446.	4.0	38
166	Saturn's rings and associated ring plasma cavity: Evidence for slow ring erosion. Icarus, 2017, 292, 48-53.	2.5	7
167	, Ion trapping by dust grains: Simulation applications to the Enceladus plume. Journal of Geophysical Research E: Planets, 2017, 122, 729-743.	3.6	5
168	Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 2017, 44, 4410-4418.	4.0	90
169	Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere. Geophysical Research Letters, 2017, 44, 4419-4425.	4.0	21
170	Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array. Geophysical Research Letters, 2017, 44, 4455-4462.	4.0	11
171	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
172	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
173	Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass. Geophysical Research Letters, 2017, 44, 4489-4496.	4.0	6
174	Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 2017, 44, 7643-7652.	4.0	68
175	Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 2017, 44, 4463-4471.	4.0	54
176	Jovian bow shock and magnetopause encounters by the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4506-4512.	4.0	30
177	Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 2017, 44, 7131-7139.	4.0	61
178	Junoâ€UVS approach observations of Jupiter's auroras. Geophysical Research Letters, 2017, 44, 7668-7675.	4.0	25
179	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13
180	Accelerated flows at Jupiter's magnetopause: Evidence for magnetic reconnection along the dawn flank. Geophysical Research Letters, 2017, 44, 4401-4409.	4.0	36

#	Article	IF	CITATIONS
181	A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 2017, 44, 7114-7121.	4.0	35
182	Crossâ€scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS. Journal of Geophysical Research: Space Physics, 2017, 122, 368-392.	2.4	25
183	Relativistic Electron Increase During Chorus Wave Activities on the 6-8 March 2016 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2017, 122, 11,302-11,319.	2.4	5
184	Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations. Geophysical Research Letters, 2017, 44, 10,162.	4.0	17
185	Spatial Distribution and Properties of 0.1–100ÂkeV Electrons in Jupiter's Polar Auroral Region. Geophysical Research Letters, 2017, 44, 9199-9207.	4.0	34
186	Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region. Journal of Geophysical Research: Space Physics, 2017, 122, 10,235.	2.4	15
187	Systematic Evaluation of Lowâ€Frequency Hiss and Energetic Electron Injections. Journal of Geophysical Research: Space Physics, 2017, 122, 10,263-10,274.	2.4	25
188	Energetic particle signatures of magnetic fieldâ€ e ligned potentials over Jupiter's polar regions. Geophysical Research Letters, 2017, 44, 8703-8711.	4.0	41
189	Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 2017, 549, 66-69.	27.8	79
190	Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt. Physics of Plasmas, 2017, 24, 062904.	1.9	11
191	Survey of Saturn electrostatic cyclotron harmonic wave intensity. Journal of Geophysical Research: Space Physics, 2017, 122, 8214-8227.	2.4	10
192	Three-dimensional Features of the Outer Heliosphere Due to Coupling between the Interstellar and Heliospheric Magnetic Field. V. The Bow Wave, Heliospheric Boundary Layer, Instabilities, and Magnetic Reconnection. Astrophysical Journal, 2017, 845, 9.	4.5	65
193	Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping. Geophysical Research Letters, 2017, 44, 12,057.	4.0	25
194	A Single Deformed Bow Shock for Titan‣aturn System. Journal of Geophysical Research: Space Physics, 2017, 122, 11,058.	2.4	7
195	Intense Harmonic Emissions Observed in Saturn's Ionosphere. Geophysical Research Letters, 2017, 44, 12,049.	4.0	12
196	Chorus Wave Modulation of Langmuir Waves in the Radiation Belts. Geophysical Research Letters, 2017, 44, 11,713.	4.0	18
197	Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts. Journal of Geophysical Research: Space Physics, 2017, 122, 12,353.	2.4	8
198	Nightside Pi2 Wave Properties During an Extended Period With Stable Plasmapause Location and Variable Geomagnetic Activity. Journal of Geophysical Research: Space Physics, 2017, 122, 12,120.	2.4	2

#	Article	IF	CITATIONS
199	Directionâ€finding measurements of Jovian lowâ€frequency radio components by Juno near Perijove 1. Geophysical Research Letters, 2017, 44, 6508-6516.	4.0	14
200	The Juno Waves Investigation. Space Science Reviews, 2017, 213, 347-392.	8.1	110
201	PRESSURE PULSES AT VOYAGER 2: DRIVERS OF INTERSTELLAR TRANSIENTS?. Astrophysical Journal, 2017, 834, 190.	4.5	35
202	Energy-banded ions in Saturn's magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 5181-5202.	2.4	3
203	Juno observations of largeâ€scale compressions of Jupiter's dawnside magnetopause. Geophysical Research Letters, 2017, 44, 7559-7568.	4.0	20
204	Largeâ€scale solar wind flow around Saturn's nonaxisymmetric magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 9198-9206.	2.4	7
205	Magnetospheric Science Objectives of the Juno Mission. Space Science Reviews, 2017, 213, 219-287.	8.1	163
206	Longâ€īerm Variability of Jupiter's Magnetodisk and Implications for the Aurora. Journal of Geophysical Research: Space Physics, 2017, 122, 12,090.	2.4	15
207	The Juno Waves Investigation. , 2017, , 425-470.		1
208	Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophysical Research Letters, 2016, 43, 3009-3016.	4.0	88
209	Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. Journal of Geophysical Research: Space Physics, 2016, 121, 5520-5536.	2.4	77
210	Dust detection in space using the monopole and dipole electric field antennas. Journal of Geophysical Research: Space Physics, 2016, 121, 11,964.	2.4	23
211	Rotational modulation of Saturn's radio emissions after equinox. Journal of Geophysical Research: Space Physics, 2016, 121, 11,714.	2.4	25
212	Simulation of energyâ€dependent electron diffusion processes in the Earth's outer radiation belt. Journal of Geophysical Research: Space Physics, 2016, 121, 4217-4231.	2.4	50
213	New chorus wave properties near the equator from Van Allen Probes wave observations. Geophysical Research Letters, 2016, 43, 4725-4735.	4.0	100
214	Spatial distribution of Langmuir waves observed upstream of Saturn's bow shock by Cassini. Journal of Geophysical Research: Space Physics, 2016, 121, 7771-7784.	2.4	6
215	Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument. Journal of Geophysical Research: Space Physics, 2016, 121, 4590-4606.	2.4	33
216	Short periodicities in low-frequency plasma waves at Saturn. Journal of Geophysical Research: Space Physics, 2016, 121, 6562-6572.	2.4	5

#	Article	IF	CITATIONS
217	Survey of Galileo plasma observations in Jupiter's plasma sheet. Journal of Geophysical Research E: Planets, 2016, 121, 871-894.	3.6	81
218	Reproducing the observed energyâ€dependent structure of Earth's electron radiation belts during storm recovery with an eventâ€specific diffusion model. Geophysical Research Letters, 2016, 43, 5616-5625.	4.0	71
219	ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A. Journal of Geophysical Research: Space Physics, 2016, 121, 5384-5393.	2.4	36
220	Characteristic energy range of electron scattering due to plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 2016, 121, 11,737.	2.4	54
221	Cassini observations of ionospheric plasma in Saturn's magnetotail lobes. Journal of Geophysical Research: Space Physics, 2016, 121, 338-357.	2.4	16
222	Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. Journal of Geophysical Research: Space Physics, 2016, 121, 358-373.	2.4	3
223	Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves. Journal of Geophysical Research: Space Physics, 2016, 121, 3212-3222.	2.4	38
224	Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes. Geophysical Research Letters, 2016, 43, 12,348.	4.0	69
225	On the links between the radio flux and magnetodisk distortions at Jupiter. Journal of Geophysical Research: Space Physics, 2016, 121, 9651-9670.	2.4	7
226	EMIC waves and associated relativistic electron precipitation on 25–26 January 2013. Journal of Geophysical Research: Space Physics, 2016, 121, 11,086.	2.4	36
227	The relationship between the plasmapause and outer belt electrons. Journal of Geophysical Research: Space Physics, 2016, 121, 8392-8416.	2.4	18
228	Juno model rheometry and simulation. Radio Science, 2016, 51, 1627-1635.	1.6	9
229	Direct evidence for EMIC wave scattering of relativistic electrons in space. Journal of Geophysical Research: Space Physics, 2016, 121, 6620-6631.	2.4	67
230	Conjugate observations of quasiperiodic emissions by the Cluster, Van Allen Probes, and THEMIS spacecraft. Journal of Geophysical Research: Space Physics, 2016, 121, 7647-7663.	2.4	19
231	Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft. Journal of Geophysical Research: Space Physics, 2016, 121, 4611-4625.	2.4	64
232	Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event. Journal of Geophysical Research: Space Physics, 2016, 121, 8300-8316.	2.4	19
233	Survey of the frequency dependent latitudinal distribution of the fast magnetosonic wave mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science waveform receiver plasma wave analysis. Journal of Geophysical Research: Space Physics, 2016, 121, 2902-2921.	2.4	63
234	Unraveling the excitation mechanisms of highly oblique lower band chorus waves. Geophysical Research Letters, 2016, 43, 8867-8875.	4.0	75

#	Article	IF	CITATIONS
235	Electron scattering by magnetosonic waves in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 274-285.	2.4	102
236	Hybrid simulation of Titan's interaction with the supersonic solar wind during Cassini's T96 flyby. Geophysical Research Letters, 2016, 43, 35-42.	4.0	16
237	Recurrent pulsations in Saturn's high latitude magnetosphere. Icarus, 2016, 263, 94-100.	2.5	32
238	In-situ measurements of Saturn's dusty rings based on dust impact signals detected by Cassini RPWS. Icarus, 2016, 279, 51-61.	2.5	25
239	Interplanetary magnetic field structure at Saturn inferred from nanodust measurements during the 2013 aurora campaign. Icarus, 2016, 263, 10-16.	2.5	5
240	Saturn's auroral morphology and field-aligned currents during a solar wind compression. Icarus, 2016, 263, 83-93.	2.5	26
241	Saturn kilometric radiation intensities during the Saturn auroral campaign of 2013. Icarus, 2016, 263, 2-9.	2.5	13
242	Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn's outer magnetosphere. Icarus, 2016, 271, 1-18.	2.5	27
243	Quasi-periodic injections of relativistic electrons in Saturn's outer magnetosphere. Icarus, 2016, 263, 101-116.	2.5	36
244	Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2015, 120, 1144-1152.	2.4	23
245	Sustained lobe reconnection in Saturn's magnetotail. Journal of Geophysical Research: Space Physics, 2015, 120, 10,257.	2.4	18
246	Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes. Journal of Geophysical Research: Space Physics, 2015, 120, 904-914.	2.4	395
247	Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study. Geophysical Research Letters, 2015, 42, 7273-7281.	4.0	31
248	Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics. Journal of Geophysical Research: Space Physics, 2015, 120, 3393-3405.	2.4	164
249	Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities. Journal of Geophysical Research: Space Physics, 2015, 120, 6371-6385.	2.4	6
250	Simultaneous Pi2 observations by the Van Allen Probes inside and outside the plasmasphere. Journal of Geophysical Research: Space Physics, 2015, 120, 4567-4575.	2.4	15
251	Externally driven plasmaspheric ULF waves observed by the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2015, 120, 526-552.	2.4	44
252	Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves. Journal of Geophysical Research: Space Physics, 2015, 120, 10,384.	2.4	9

#	Article	lF	CITATIONS
253	Weak kinetic Alfvén waves turbulence during the 14ÂNovemberÂ2012 geomagnetic storm: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2015, 120, 5504-5523.	2.4	36
254	Analysis of plasmaspheric hiss wave amplitudes inferred from lowâ€altitude POES electron data: Technique sensitivity analysis. Journal of Geophysical Research: Space Physics, 2015, 120, 3552-3563.	2.4	3
255	Analysis of plasmaspheric hiss wave amplitudes inferred from lowâ€altitude POES electron data: Validation with conjunctive Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2015, 120, 8681-8691.	2.4	7
256	PRECURSORS TO INTERSTELLAR SHOCKS OF SOLAR ORIGIN. Astrophysical Journal, 2015, 809, 121.	4.5	68
257	Electrostatic solitary waves observed at Saturn by Cassini inside 10 <i>R_s</i> and near Enceladus. Journal of Geophysical Research: Space Physics, 2015, 120, 6569-6580.	2.4	34
258	Effects of Saturn's magnetospheric dynamics on Titan's ionosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 8884-8898.	2.4	11
259	Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms. Journal of Geophysical Research: Space Physics, 2015, 120, 938-948.	2.4	20
260	First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophysical Research Letters, 2015, 42, 241-248.	4.0	48
261	Titan's interaction with the supersonic solar wind. Geophysical Research Letters, 2015, 42, 193-200.	4.0	40
262	Disappearance of plasmaspheric hiss following interplanetary shock. Geophysical Research Letters, 2015, 42, 3129-3140.	4.0	34
263	Evidence for a seasonally dependent ring plasma in the region between Saturn's A Ring and Enceladus' orbit. Journal of Geophysical Research: Space Physics, 2015, 120, 6276-6285.	2.4	17
264	Systematic evaluation of the characteristics and generation of low-frequency plasmaspheric hiss. , 2015, , .		0
265	Plasma conditions at Europa's orbit. Icarus, 2015, 261, 1-13.	2.5	62
266	Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons. Geophysical Research Letters, 2015, 42, 1012-1019.	4.0	40
267	Modeling inward diffusion and slow decay of energetic electrons in the Earth's outer radiation belt. Geophysical Research Letters, 2015, 42, 987-995.	4.0	87
268	Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2015, 120, 1182-1196.	2.4	46
269	Link between premidnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probe spacecraft and a THEMIS all-sky imager. Journal of Geophysical Research: Space Physics, 2015, 120, 1814-1831.	2.4	14
270	BARREL observations of an ICMEâ€shock impact with the magnetosphere and the resultant radiation belt electron loss. Journal of Geophysical Research: Space Physics, 2015, 120, 2557-2570.	2.4	35

#	Article	IF	CITATIONS
271	Statistics of Langmuir wave amplitudes observed inside Saturn's foreshock by the Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2015, 120, 2531-2542.	2.4	9
272	Study of EMIC wave excitation using direct ion measurements. Journal of Geophysical Research: Space Physics, 2015, 120, 2702-2719.	2.4	38
273	Saturn kilometric radiation periodicity after equinox. Icarus, 2015, 254, 72-91.	2.5	31
274	NANODUST DETECTION BETWEEN 1 AND 5 AU USING <i>CASSINI</i> WAVE MEASUREMENTS. Astrophysical Journal, 2015, 806, 77.	4.5	14
275	Plasma regions, charged dust and field-aligned currents near Enceladus. Planetary and Space Science, 2015, 117, 453-469.	1.7	16
276	Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes. Geophysical Research Letters, 2014, 41, 229-235.	4.0	60
277	A possible influence of the Great White Spot on Saturn kilometric radiation periodicity. Annales Geophysicae, 2014, 32, 1463-1476.	1.6	19
278	Excitation of nightside magnetosonic waves observed by Van Allen Probes. Journal of Geophysical Research: Space Physics, 2014, 119, 9125-9133.	2.4	25
279	Global magnetodisk disturbances and energetic particle injections at Jupiter. Journal of Geophysical Research: Space Physics, 2014, 119, 4495-4511.	2.4	37
280	Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons. Journal of Geophysical Research: Space Physics, 2014, 119, 4266-4273.	2.4	49
281	Simulation of Van Allen Probes plasmapause encounters. Journal of Geophysical Research: Space Physics, 2014, 119, 7464-7484.	2.4	95
282	The Solar System at Radio Wavelengths. , 2014, , 1107-1132.		1
283	Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. Geophysical Research Letters, 2014, 41, 3323-3330.	4.0	43
284	An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature, 2014, 515, 531-534.	27.8	159
285	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
286	Evidence of stronger pitch angle scattering loss caused by oblique whistlerâ€mode waves as compared with quasiâ€parallel waves. Geophysical Research Letters, 2014, 41, 6063-6070.	4.0	63
287	Competing source and loss mechanisms due to waveâ€particle interactions in Earth's outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2014, 119, 1960-1979.	2.4	103
288	Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2014, 119, 3325-3332.	2.4	101

#	Article	IF	CITATIONS
289	Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations. Geophysical Research Letters, 2014, 41, 20-25.	4.0	88
290	The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere. Geophysical Research Letters, 2014, 41, 6307-6313.	4.0	51
291	Generation of unusually low frequency plasmaspheric hiss. Geophysical Research Letters, 2014, 41, 5702-5709.	4.0	56
292	An estimate of the dust pickup current at Enceladus. Icarus, 2014, 239, 217-221.	2.5	8
293	Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 2014, 119, 4681-4693.	2.4	182
294	Van Allen Probe observations of periodic rising frequencies of the fast magnetosonic mode. Geophysical Research Letters, 2014, 41, 8161-8168.	4.0	52
295	Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts. Journal of Geophysical Research: Space Physics, 2014, 119, 3373-3380.	2.4	22
296	Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2014, 119, 6294-6312.	2.4	40
297	Van Allen Probes observations of direct waveâ€particle interactions. Geophysical Research Letters, 2014, 41, 1869-1875.	4.0	32
298	Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt. Journal of Geophysical Research: Space Physics, 2014, 119, 10,023.	2.4	37
299	Observations of kinetic scale field line resonances. Geophysical Research Letters, 2014, 41, 209-215.	4.0	69
300	Quantifying hissâ€driven energetic electron precipitation: A detailed conjunction event analysis. Geophysical Research Letters, 2014, 41, 1085-1092.	4.0	36
301	Nanodust detection near 1 AU from spectral analysis of Cassini/Radio and Plasma Wave Science data. Geophysical Research Letters, 2014, 41, 5382-5388.	4.0	17
302	A novel technique to construct the global distribution of whistler mode chorus wave intensity using lowâ€altitude POES electron data. Journal of Geophysical Research: Space Physics, 2014, 119, 5685-5699.	2.4	63
303	Cassini multiâ€instrument assessment of Saturn's polar cap boundary. Journal of Geophysical Research: Space Physics, 2014, 119, 8161-8177.	2.4	31
304	Outflow and plasma acceleration in Titan's induced magnetotail: Evidence of magnetic tension forces. Journal of Geophysical Research: Space Physics, 2014, 119, 9992.	2.4	4
305	Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions. , 2014, , .		0
306	Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013. Geophysical Research Letters, 2014, 41, 4101-4108.	4.0	55

#	Article	lF	CITATIONS
307	Fine structure of largeâ€amplitude chorus wave packets. Geophysical Research Letters, 2014, 41, 293-299.	4.0	130
308	Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophysical Research Letters, 2014, 41, 1854-1861.	4.0	110
309	Cassini nightside observations of the oscillatory motion of Saturn's northern auroral oval. Journal of Geophysical Research: Space Physics, 2014, 119, 3528-3543.	2.4	17
310	Calculation of whistler-mode wave intensity using energetic electron precipitation. , 2014, , .		0
311	Detection of a strongly negative surface potential at Saturn's moon Hyperion. Geophysical Research Letters, 2014, 41, 7011-7018.	4.0	12
312	Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2014, 119, 8288-8298.	2.4	101
313	Magnetospheric Science Objectives of the Juno Mission. , 2014, , 39-107.		3
314	The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 2013, 179, 127-181.	8.1	932
315	An unusual enhancement of lowâ€frequency plasmaspheric hiss in the outer plasmasphere associated with substormâ€injected electrons. Geophysical Research Letters, 2013, 40, 3798-3803.	4.0	120
316	Electron Acceleration in the Heart of the Van Allen Radiation Belts. Science, 2013, 341, 991-994.	12.6	463
317	Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 2013, 504, 411-414.	27.8	608
318	Van Allen Probes observation of localized drift resonance between poloidal mode ultraâ€low frequency waves and 60 keV electrons. Geophysical Research Letters, 2013, 40, 4491-4497.	4.0	127
319	In Situ Observations of Interstellar Plasma with Voyager 1. Science, 2013, 341, 1489-1492.	12.6	276
320	Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm. Geophysical Research Letters, 2013, 40, 3507-3511.	4.0	150
321	Science Potential from a Europa Lander. Astrobiology, 2013, 13, 740-773.	3.0	98
322	Dust–plasma interaction through magnetosphere–ionosphere coupling in Saturn's plasma disk. Planetary and Space Science, 2013, 75, 11-16.	1.7	13
323	Dynamics of Saturn's great storm of 2010–2011 from Cassini ISS and RPWS. Icarus, 2013, 223, 460-478.	2.5	81
324	Earliest recorded ground-based decameter wavelength observations of Saturn's lightning during the giant E-storm detected by Cassini spacecraft in early 2006. Icarus, 2013, 224, 14-23.	2.5	20

#	Article	IF	CITATIONS
325	EVIDENCE FOR A SHOCK IN INTERSTELLAR PLASMA: <i>VOYAGER 1</i> . Astrophysical Journal Letters, 2013, 778, L3.	8.3	64
326	The plasma density distribution in the inner region of Saturn's magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 2970-2974.	2.4	41
327	ULF waves in Ganymede's upstream magnetosphere. Annales Geophysicae, 2013, 31, 45-59.	1.6	6
328	Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes. Geophysical Research Letters, 2013, 40, 4526-4532.	4.0	153
329	The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. , 2013, , 127-181.		28
330	Correction to "Dusty plasma in the vicinity of Enceladus― Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	1
331	Cassini observation of Jovian anomalous continuum radiation. Journal of Geophysical Research, 2012, 117, .	3.3	4
332	Flow stagnation at Enceladus: The effects of neutral gas and charged dust. Journal of Geophysical Research, 2012, 117, .	3.3	9
333	Asymmetry of Io's outer atmosphere: Constraints from five Galileo flybys. Journal of Geophysical Research, 2012, 117, .	3.3	29
334	Energetic electron observations of Rhea's magnetospheric interaction. Icarus, 2012, 221, 116-134.	2.5	24
335	The electromagnetic pickup of submicron-sized dust above Enceladus's northern hemisphere. Icarus, 2012, 219, 498-501.	2.5	12
336	First results of the JUNO/Waves antenna investigations. , 2011, , .		2
337	Whistler mode chorus enhancements in association with energetic electron signatures in the Jovian magnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	12
338	Emission and propagation of Saturn kilometric radiation: Magnetoionic modes, beaming pattern, and polarization state. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	49
339	Auroral hiss, electron beams and standing Alfvén wave currents near Saturn's moon Enceladus. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	23
340	Intense plasma wave emissions associated with Saturn's moon Rhea. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	32
341	The rotation of the plasmapause-like boundary at high latitudes in Saturn's magnetosphere and its relation to the eccentric rotation of the northern and southern auroral ovals. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	16
342	Auroral electron distributions within and close to the Saturn kilometric radiation source region. Journal of Geophysical Research, 2011, 116, .	3.3	35

#	Article	IF	CITATIONS
343	Dusty plasma in the vicinity of Enceladus. Journal of Geophysical Research, 2011, 116, .	3.3	89
344	Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations. Space Science Reviews, 2011, 164, 1-83.	8.1	40
345	Characteristics of the dust–plasma interaction near Enceladus' South Pole. Planetary and Space Science, 2011, 59, 17-25.	1.7	43
346	Response to "Comment on "Slow-mode shock candidate in the Jovian magnetosheath―by Bebesi et al.â€ Planetary and Space Science, 2011, 59, 445-446.	' 1.7	0
347	Controlling low frequency interference from direct energy transfer spacecraft power systems. , 2011,		3
348	A giant thunderstorm on Saturn. Nature, 2011, 475, 75-77.	27.8	116
349	Slow-mode shock candidate in the Jovian magnetosheath. Planetary and Space Science, 2010, 58, 807-813.	1.7	4
350	Hybrid Simulations of Plasma-Neutral-Dust Interactions at Enceladus. , 2010, , .		2
351	Phase relations between energetic neutral atom intensities and kilometric radio emissions at Saturn. Journal of Geophysical Research, 2010, 115, .	3.3	10
352	Properties of the thermal ion plasma near Rhea as measured by the Cassini plasma spectrometer. Journal of Geophysical Research, 2010, 115, .	3.3	20
353	Cassini observations of narrowband radio emissions in Saturn's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	26
354	Z mode waves as the source of Saturn narrowband radio emissions. Journal of Geophysical Research, 2010, 115, .	3.3	30
355	Electron beams as the source of whistlerâ€mode auroral hiss at Saturn. Geophysical Research Letters, 2010, 37, .	4.0	31
356	Detection of visible lightning on Saturn. Geophysical Research Letters, 2010, 37, .	4.0	42
357	Properties of Saturn kilometric radiation measured within its source region. Geophysical Research Letters, 2010, 37, .	4.0	74
358	A plasmapauseâ€like density boundary at high latitudes in Saturn's magnetosphere. Geophysical Research Letters, 2010, 37, .	4.0	38
359	Modification of the plasma in the nearâ€vicinity of Enceladus by the enveloping dust. Geophysical Research Letters, 2010, 37, .	4.0	26
360	CMI growth rates for Saturnian kilometric radiation. Geophysical Research Letters, 2010, 37, .	4.0	33

#	Article	IF	CITATIONS
361	The reversal of the rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox. Geophysical Research Letters, 2010, 37, .	4.0	65
362	Interaction of Saturn's magnetosphere and its moons: 3. Time variation of the Enceladus plume. Journal of Geophysical Research, 2010, 115, .	3.3	11
363	Extraordinary fieldâ€eligned current signatures in Saturn's highâ€ŀatitude magnetosphere: Analysis of Cassini data during Revolution 89. Journal of Geophysical Research, 2010, 115, .	3.3	31
364	Dual periodicities in the rotational modulation of Saturn narrowband emissions. Journal of Geophysical Research, 2010, 115, .	3.3	24
365	The electron density of Saturn's magnetosphere. Annales Geophysicae, 2009, 27, 2971-2991.	1.6	73
366	Titan's ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Annales Geophysicae, 2009, 27, 4257-4272.	1.6	25
367	Characteristics of charged dust inferred from the Cassini RPWS measurements in the vicinity of Enceladus. Planetary and Space Science, 2009, 57, 1807-1812.	1.7	49
368	Detection of dusty plasma near the E-ring of Saturn. Planetary and Space Science, 2009, 57, 1795-1806.	1.7	104
369	Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions. Planetary and Space Science, 2009, 57, 1732-1742.	1.7	140
370	New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data. Planetary and Space Science, 2009, 57, 1872-1888.	1.7	48
371	On the amount of heavy molecular ions in Titan's ionosphere. Planetary and Space Science, 2009, 57, 1857-1865.	1.7	96
372	Discovery of a northâ€south asymmetry in Saturn's radio rotation period. Geophysical Research Letters, 2009, 36, .	4.0	143
373	A northâ€south difference in the rotation rate of auroral hiss at Saturn: Comparison to Saturn's kilometric radio emission. Geophysical Research Letters, 2009, 36, .	4.0	61
374	Saturn's equinoctial auroras. Geophysical Research Letters, 2009, 36, .	4.0	37
375	Electron densities in Jupiter's outer magnetosphere determined from Voyager 1 and 2 plasma wave spectra. Journal of Geophysical Research, 2009, 114, .	3.3	26
376	Elliptical polarization of Saturn Kilometric Radiation observed from high latitudes. Journal of Geophysical Research, 2009, 114, .	3.3	36
377	Electron density dropout near Enceladus in the context of waterâ€vapor and waterâ€ice. Geophysical Research Letters, 2009, 36, .	4.0	42
378	Ion conics and electron beams associated with auroral processes on Saturn. Journal of Geophysical Research, 2009, 114, .	3.3	81

#	Article	IF	CITATIONS
379	Response of Jupiter's and Saturn's auroral activity to the solar wind. Journal of Geophysical Research, 2009, 114, .	3.3	161
380	Goniopolarimetric study of the revolution 29 perikrone using the Cassini Radio and Plasma Wave Science instrument highâ€frequency radio receiver. Journal of Geophysical Research, 2009, 114, .	3.3	47
381	Source locations of narrowband radio emissions detected at Saturn. Journal of Geophysical Research, 2009, 114, .	3.3	38
382	A diffusive equilibrium model for the plasma density in Saturn's magnetosphere. Journal of Geophysical Research, 2009, 114, .	3.3	85
383	On the character and distribution of lowerâ€frequency radio emissions at Saturn and their relationship to substormâ€ike events. Journal of Geophysical Research, 2009, 114, .	3.3	57
384	Auroral Processes. , 2009, , 333-374.		34
385	Saturn kilometric radiation as a monitor for the solar wind?. Advances in Space Research, 2008, 42, 40-47.	2.6	13
386	Atmospheric Electricity at Saturn. Space Science Reviews, 2008, 137, 271-285.	8.1	44
387	Intense plasma waves at and near the solar wind termination shock. Nature, 2008, 454, 78-80.	27.8	54
388	Mass unloading along the inner edge of the Enceladus plasma torus. Geophysical Research Letters, 2008, 35, .	4.0	16
389	An update to a Saturnian longitude system based on kilometric radio emissions. Journal of Geophysical Research, 2008, 113, .	3.3	148
390	Saturn kilometric radiation: Average and statistical properties. Journal of Geophysical Research, 2008, 113, .	3.3	98
391	Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics, 2008, 46, .	23.0	23
392	Atmospheric Electricity at Saturn. Space Sciences Series of ISSI, 2008, , 271-285.	0.0	3
393	Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument. Journal of Geophysical Research, 2008, 113, .	3.3	60
394	Electrostatic Waves Observed At and Near the Solar Wind Termination Shock By Voyager 2. AIP Conference Proceedings, 2008, , .	0.4	1
395	The Dust Halo of Saturn's Largest Icy Moon, Rhea. Science, 2008, 319, 1380-1384.	12.6	53
396	The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk. Science, 2007, 316, 442-445.	12.6	223

#	Article	IF	CITATIONS
397	The Solar System at Radio Wavelengths. , 2007, , 695-718.		1
398	A Saturnian longitude system based on a variable kilometric radiation period. Geophysical Research Letters, 2007, 34, .	4.0	117
399	Are Saturn electrostatic discharges really superbolts? A temporal dilemma. Geophysical Research Letters, 2007, 34, .	4.0	18
400	Lowâ€frequency waves in the foreshock of Saturn: First results from Cassini. Journal of Geophysical Research, 2007, 112, .	3.3	18
401	Observation of similar radio signatures at Saturn and Jupiter: Implications for the magnetospheric dynamics. Geophysical Research Letters, 2007, 34, .	4.0	41
402	Magnetic signatures of plasmaâ€depleted flux tubes in the Saturnian inner magnetosphere. Geophysical Research Letters, 2007, 34, .	4.0	49
403	Far plasma wake of Titan from the RPWS observations: A case study. Geophysical Research Letters, 2007, 34, .	4.0	22
404	Plasma environment in the wake of Titan from hybrid simulation: A case study. Geophysical Research Letters, 2007, 34, .	4.0	39
405	Structure of Titan's midâ€range magnetic tail: Cassini magnetometer observations during the T9 flyby. Geophysical Research Letters, 2007, 34, .	4.0	34
406	Nondetection of Titan lightning radio emissions with Cassini/RPWS after 35 close Titan flybys. Geophysical Research Letters, 2007, 34, .	4.0	21
407	Influence of Saturnian moons on Saturn kilometric radiation. Journal of Geophysical Research, 2007, 112, .	3.3	23
408	Polarization measurements of Saturn Electrostatic Discharges with Cassini/RPWS below a frequency of 2 MHz. Journal of Geophysical Research, 2007, 112, .	3.3	6
409	Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus, 2007, 190, 545-555.	2.5	67
410	Analysis of a giant lightning storm on Saturn. Icarus, 2007, 190, 528-544.	2.5	78
411	On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study. Annales Geophysicae, 2007, 25, 2359-2369.	1.6	78
412	Innovative interstellar explorer. AIP Conference Proceedings, 2006, , .	0.4	5
413	Electrostatic solitary structures observed at Saturn. Geophysical Research Letters, 2006, 33, .	4.0	25
414	Changing electrical nature of Saturn's rings: Implications for spoke formation. Geophysical Research Letters, 2006, 33, .	4.0	8

#	Article	IF	CITATIONS
415	Whistler-mode auroral hiss emissions observed near Saturn's B ring. Journal of Geophysical Research, 2006, 111, .	3.3	15
416	Rotationally driven quasi-periodic radio emissions in the Jovian magnetosphere. Journal of Geophysical Research, 2006, 111, .	3.3	10
417	Discrimination between Jovian radio emissions and Saturn electrostatic discharges. Geophysical Research Letters, 2006, 33, .	4.0	5
418	First whistler observed in the magnetosphere of Saturn. Geophysical Research Letters, 2006, 33, .	4.0	32
419	A simple scale height model of the electron density in Saturn's plasma disk. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	62
420	Saturn's auroral morphology and activity during quiet magnetospheric conditions. Journal of Geophysical Research, 2006, 111, .	3.3	35
421	The Interaction of the Atmosphere of Enceladus with Saturn's Plasma. Science, 2006, 311, 1409-1412.	12.6	176
422	Plasma waves associated with the termination shock. AIP Conference Proceedings, 2006, , .	0.4	1
423	The local interstellar magnetic field direction from direction-finding measurements of heliospheric 2–3 kHz radio emissions. AIP Conference Proceedings, 2006, , .	0.4	16
424	Linear prediction studies for the solar wind and Saturn kilometric radiation. Annales Geophysicae, 2006, 24, 3139-3150.	1.6	15
425	Saturn lightning recorded by Cassini/RPWS in 2004. Icarus, 2006, 183, 135-152.	2.5	57
426	A pre-shock event at Jupiter on 30 January 2001. Planetary and Space Science, 2006, 54, 200-211.	1.7	3
427	Cassini RPWS observations of dust in Saturn's E Ring. Planetary and Space Science, 2006, 54, 988-998.	1.7	91
428	Characteristics of dust particles detected near Saturn's ring plane with the Cassini Radio and Plasma Wave instrument. Planetary and Space Science, 2006, 54, 957-966.	1.7	55
429	Occultations of Auroral Kilometric Radiation in the Vicinity of the Earth. COSPAR Colloquia Series, 2005, 16, 220-223.	0.2	1
430	Are Io's Alfvén wings filamented? Galileo observations. Planetary and Space Science, 2005, 53, 395-412.	1.7	60
431	Cassini UVIS observations of Jupiter's auroral variability. Icarus, 2005, 178, 312-326.	2.5	39
432	Science opportunities with a double Langmuir probe and electric field experiment for JIMO. Advances in Space Research, 2005, 36, 2110-2119.	2.6	0

#	Article	IF	CITATIONS
433	Morphological differences between Saturn's ultraviolet aurorae and those of Earth and Jupiter. Nature, 2005, 433, 717-719.	27.8	155
434	Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae. Nature, 2005, 433, 720-722.	27.8	126
435	Radio Wave Emission from the Outer Planets Before Cassini. Space Science Reviews, 2005, 116, 371-397.	8.1	47
436	Electron Plasma Oscillations Upstream of the Solar Wind Termination Shock. Science, 2005, 309, 2025-2027.	12.6	72
437	Cassini Measurements of Cold Plasma in the Ionosphere of Titan. Science, 2005, 308, 986-989.	12.6	178
438	Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit. Science, 2005, 307, 1255-1259.	12.6	236
439	An Earth-like correspondence between Saturn's auroral features and radio emission. Nature, 2005, 433, 722-725.	27.8	104
440	Effects of ring shadowing on the detection of electrostatic discharges at Saturn. Geophysical Research Letters, 2005, 32, .	4.0	20
441	Quasi thermal noise spectroscopy in the inner magnetosphere of Saturn with Cassini/RPWS: Electron temperatures and density. Geophysical Research Letters, 2005, 32, .	4.0	67
442	Properties of local plasma injections in Saturn's magnetosphere. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	109
443	Energetic ion acceleration in Saturn's magnetotail: Substorms at Saturn?. Geophysical Research Letters, 2005, 32, .	4.0	124
444	High spectral and temporal resolution observations of Saturn kilometric radiation. Geophysical Research Letters, 2005, 32, .	4.0	16
445	Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	65
446	The inner magnetosphere of Saturn: Cassini RPWS cold plasma results from the first encounter. Geophysical Research Letters, 2005, 32, .	4.0	67
447	In situ observations of a solar wind compression-induced hot plasma injection in Saturn's tail. Geophysical Research Letters, 2005, 32, .	4.0	92
448	Electrostatic solitary structures associated with the November 10, 2003, interplanetary shock at 8.7 AU. Geophysical Research Letters, 2005, 32, .	4.0	32
449	A nightside source of Saturn's kilometric radiation: Evidence for an inner magnetosphere energy driver. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	13
450	Equatorial electron density measurements in Saturn's inner magnetosphere. Geophysical Research Letters, 2005, 32, .	4.0	69

#	Article	IF	CITATIONS
451	Interplanetary conditions and magnetospheric dynamics during the Cassini orbit insertion fly-through of Saturn's magnetosphere. Journal of Geophysical Research, 2005, 110, .	3.3	33
452	Narrowband Z-mode emissions interior to Saturn's plasma torus. Journal of Geophysical Research, 2005, 110, .	3.3	11
453	The Cassini Radio and Plasma Wave Investigation. Space Science Reviews, 2004, 114, 395-463.	8.1	455
454	Study of solar system planetary lightning with LOFAR. Planetary and Space Science, 2004, 52, 1435-1447.	1.7	39
455	Remote sensing of possible plasma density bubbles in the inner Jovian dayside magnetosphere. Journal of Geophysical Research, 2004, 109, .	3.3	18
456	New observations from Cassini and Ulysses of Jovian VLF radio emissions. Journal of Geophysical Research, 2004, 109, .	3.3	18
457	Jupiter's low-frequency radio spectrum from Cassini/Radio and Plasma Wave Science (RPWS) absolute flux density measurements. Journal of Geophysical Research, 2004, 109, .	3.3	143
458	In-flight calibration of the Cassini-Radio and Plasma Wave Science (RPWS) antenna system for direction-finding and polarization measurements. Journal of Geophysical Research, 2004, 109, .	3.3	39
459	Simultaneous observations of Jovian quasi-periodic radio emissions by the Galileo and Cassini spacecraft. Journal of Geophysical Research, 2004, 109, .	3.3	29
460	Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions. Journal of Geophysical Research, 2004, 109, .	3.3	41
461	The Cassini Radio and Plasma Wave Investigation. , 2004, , 395-463.		14
462	Modeling radio emission attenuation lanes observed by the Galileo and Cassini spacecraft. Planetary and Space Science, 2003, 51, 533-540.	1.7	8
463	lon isotropy and ion resonant waves in the solar wind: Corrected Cassini observations. Journal of Geophysical Research, 2003, 108, .	3.3	9
464	Cassini plasma spectrometer measurements of Jovian bow shock structure. Journal of Geophysical Research, 2003, 108, .	3.3	19
465	The return of the heliospheric 2-3 kHz radio emission during solar cycle 23. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	37
466	On the source location of low-frequency heliospheric radio emissions. Journal of Geophysical Research, 2003, 108, .	3.3	58
467	Electric Fluctuations and Ion Isotropy. AIP Conference Proceedings, 2003, , .	0.4	0

468 Magnetospheric and Plasma Science with Cassini-Huygens. , 2003, , 253-346.

3

#	Article	IF	CITATIONS
469	Control of Jupiter's radio emission and aurorae by the solar wind. Nature, 2002, 415, 985-987.	27.8	171
470	The dusk flank of Jupiter's magnetosphere. Nature, 2002, 415, 991-994.	27.8	44
471	Magnetospheric and Plasma Science with Cassini-Huygens. Space Science Reviews, 2002, 104, 253-346.	8.1	47
472	lon isotropy and ion resonant waves in the solar wind: Cassini observations. Geophysical Research Letters, 2001, 28, 87-90.	4.0	7
473	An overview of observations by the Cassini radio and plasma wave investigation at Earth. Journal of Geophysical Research, 2001, 106, 30239-30252.	3.3	15
474	Observations of two complete substorm cycles during the Cassini Earth swing-by: Cassini magnetometer data in a global context. Journal of Geophysical Research, 2001, 106, 30141-30175.	3.3	17
475	A multi-instrument study of a Jovian magnetospheric disturbance. Journal of Geophysical Research, 2001, 106, 29883-29898.	3.3	29
476	Wave normal and Poynting vector calculations using the Cassini radio and plasma wave instrument. Journal of Geophysical Research, 2001, 106, 30253-30269.	3.3	16
477	Electron densities near Io from Galileo plasma wave observations. Journal of Geophysical Research, 2001, 106, 26225-26232.	3.3	23
478	Plasma waves observed in the cusp turbulent boundary layer: An analysis of high time resolution wave and particle measurements from the Polar spacecraft. Journal of Geophysical Research, 2001, 106, 19081-19099.	3.3	45
479	Correction to "lon isotropy and ion resonant waves in the solar wind: Cassini observations― Geophysical Research Letters, 2001, 28, 4061-4061.	4.0	Ο
480	Dual spacecraft measurements as a tool for determining the source of low-frequency heliospheric radio emissions. COSPAR Colloquia Series, 2001, 11, 245-251.	0.2	3
481	Depleted magnetic flux tubes as probes of the Io torus plasma. Advances in Space Research, 2001, 28, 1489-1493.	2.6	9
482	The plasma wave environment of Europa. Planetary and Space Science, 2001, 49, 345-363.	1.7	52
483	Temporal monitoring of Jupiter's auroral activity with IUE during the Galileo mission. Implications for magnetospheric processes. Planetary and Space Science, 2001, 49, 405-415.	1.7	26
484	Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature, 2001, 409, 313-315.	27.8	79
485	The Influence of the Galilean satellites on radio emissions from the Jovian system. Geophysical Monograph Series, 2000, , 213-225.	0.1	6
486	Cassini and Wind stereoscopic observations of Jovian nonthermal radio emissions: Measurement of beam widths. Journal of Geophysical Research, 2000, 105, 16053-16062.	3.3	40

#	Article	IF	CITATIONS
487	A study of the Jovian "energetic magnetospheric events―observed by Galileo: role in the radial plasma transport. Journal of Geophysical Research, 2000, 105, 13073-13088.	3.3	52
488	Plasma densities in the vicinity of Callisto from Galileo plasma wave observations. Geophysical Research Letters, 2000, 27, 1867-1870.	4.0	33
489	Implications of depleted flux tubes in the Jovian magnetosphere. Geophysical Research Letters, 2000, 27, 3133-3136.	4.0	24
490	A photovoltaic industry survey on post-lamination module manufacturing. , 1999, , .		1
491	Local time dependence of Jovian radio emissions observed by Galileo. Geophysical Research Letters, 1999, 26, 569-572.	4.0	7
492	Mirror-mode structures at the Galileo-Io flyby: Observations. Journal of Geophysical Research, 1999, 104, 17471-17477.	3.3	36
493	Effectiveness of near-grazing incidence reflection in creating the rotationally modulated lanes in the Jovian hectometric radio emission spectrum. Radio Science, 1999, 34, 1005-1012.	1.6	5
494	Auroral kilometric radiation integrated power flux as a proxy for AE. Advances in Space Research, 1998, 22, 73-77.	2.6	19
495	Control of Jovian radio emission by Ganymede. Geophysical Research Letters, 1998, 25, 4281-4284.	4.0	21
496	Direction-finding measurements of heliospheric 2-3 kHz radio emissions. Geophysical Research Letters, 1998, 25, 4433-4436.	4.0	19
497	Radio emissions observed by Galileo near Io. Geophysical Research Letters, 1998, 25, 25-28.	4.0	7
498	Galileo plasma wave observations near Europa. Geophysical Research Letters, 1998, 25, 237-240.	4.0	30
499	Mode conversion at the Jovian plasma sheet boundary. Journal of Geophysical Research, 1998, 103, 14995-15000.	3.3	4
500	Galileo direction finding of Jovian radio emissions. Journal of Geophysical Research, 1998, 103, 20001-20010.	3.3	14
501	Auroral kilometric radiation and the auroral electrojet index for the January 1997 magnetic cloud event. Geophysical Research Letters, 1998, 25, 3027-3030.	4.0	11
502	An unusual rotationally modulated attenuation band in the Jovian hectometric radio emission spectrum. Geophysical Research Letters, 1998, 25, 1841-1844.	4.0	20
503	A study of the large-scale dynamics of the Jovian magnetosphere using the Galileo Plasma Wave Experiment. Geophysical Research Letters, 1998, 25, 2905-2908.	4.0	70
504	Constraints on Jovian plasma properties from a dispersion analysis of unducted whistlers in the warm Io torus. Journal of Geophysical Research, 1998, 103, 14979-14986.	3.3	11

#	Article	IF	CITATIONS
505	Cold torus whistlers: An indirect probe of the inner Jovian plasmasphere. Journal of Geophysical Research, 1998, 103, 14987-14994.	3.3	8
506	AKR Propagation in the Vicinity of the Earth. Astrophysics and Space Science Library, 1998, , 581-584.	2.7	0
507	A determination of the source of Jovian hectometric radiation via occultation by Ganymede. Geophysical Research Letters, 1997, 24, 1171-1174.	4.0	17
508	Galileo measurements of plasma density in the lo torus. Geophysical Research Letters, 1997, 24, 2119-2122.	4.0	45
509	The global plasma environment of Io as inferred from the Galileo plasma wave observations. Geophysical Research Letters, 1997, 24, 2115-2118.	4.0	7
510	Enhanced whistler-mode emissions: Signatures of interchange motion in the lo torus. Geophysical Research Letters, 1997, 24, 2123-2126.	4.0	67
511	Ganymede: A new radio source. Geophysical Research Letters, 1997, 24, 2167-2170.	4.0	32
512	Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments. Geophysical Research Letters, 1997, 24, 3125-3128.	4.0	91
513	Absence of a magnetic-field signature in plasma-wave observations at Callisto. Nature, 1997, 387, 261-262.	27.8	20
514	Radiation belts. , 1997, , 663-664.		0
515	Whistler. , 1997, , 935-936.		0
516	Anisotropy and proton density in the Io plasma torus derived from whistler wave dispersion. Journal of Geophysical Research, 1996, 101, 2699-2706.	3.3	25
517	Micron-sized particles detected in the vicinity of Jupiter by the Voyager plasma wave instruments. Geophysical Research Letters, 1996, 23, 997-1000.	4.0	24
518	Discrete, stimulated auroral kilometric radiation observed in the Galileo and DE 1 wideband data. Journal of Geophysical Research, 1996, 101, 10673-10680.	3.3	17
519	Galileo Plasma Wave Observations in the Io Plasma Torus and Near Io. Science, 1996, 274, 391-392.	12.6	131
520	Observations and analyses of heliospheric 2–3 kHz radio emissions. AIP Conference Proceedings, 1996, ,	0.4	0
521	The Planetary Plasma Interactions Node of the Planetary Data System. Planetary and Space Science, 1996, 44, 55-64.	1.7	2
522	Radio emissions from the outer heliosphere. Space Science Reviews, 1996, 78, 53-66.	8.1	42

#	Article	IF	CITATIONS
523	Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature, 1996, 384, 535-537.	27.8	152
524	Radio Emissions from the Outer Heliosphere. , 1996, , 53-66.		4
525	Heliospheric 2–3 kHz radio emissions and their relationship to large forbush decreases. Advances in Space Research, 1995, 16, 279-290.	2.6	33
526	Study of dust in the vicinity of dione using the Voyager 1 Plasma Wave Instrument. Journal of Geophysical Research, 1995, 100, 1811.	3.3	17
527	Analysis of electromagnetic wave direction finding performed by spaceborne antennas using singular-value decomposition techniques. Radio Science, 1995, 30, 1699-1712.	1.6	34
528	Heliosphere in a bottle. Nature, 1994, 368, 585-585.	27.8	0
529	A revised analysis of micron-sized particles detected near Saturn by the Voyager 2 plasma wave instrument. Journal of Geophysical Research, 1994, 99, 2261.	3.3	33
530	Evidence that Jupiter is not the source of the 2-3 kHz heliospheric radiation. Geophysical Research Letters, 1994, 21, 1571-1574.	4.0	12
531	Fine structure of Langmuir waves observed upstream of the bow shock at Venus. Journal of Geophysical Research, 1994, 99, 13363.	3.3	40
532	Correlation between terrestrial myriametric and kilometric radio bursts observed with Galileo. Journal of Geophysical Research, 1994, 99, 23541.	3.3	6
533	The source of Jovian auroral hiss observed by Voyager 1. Journal of Geophysical Research, 1994, 99, 21213.	3.3	8
534	Foreshock theories for the outer heliospheric radio emissions. Advances in Space Research, 1993, 13, 205-208.	2.6	4
535	The low-frequency interplanetary radiation. Advances in Space Research, 1993, 13, 209-215.	2.6	7
536	Radio Emission from the Heliopause Triggered by an Interplanetary Shock. Science, 1993, 262, 199-203.	12.6	218
537	Fine structure of Langmuir waves produced by a solar electron event. Journal of Geophysical Research, 1993, 98, 5631-5637.	3.3	97
538	On the generation of plasma waves in Saturn's inner magnetosphere. Journal of Geophysical Research, 1993, 98, 9351-9356.	3.3	49
539	Plasma waves as indicators of the termination shock. Journal of Geophysical Research, 1993, 98, 15129-15136.	3.3	18
540	Electrostatic wave excitation in planetary magnetospheres: Application to Neptune. Journal of Geophysical Research, 1993, 98, 19465-19469.	3.3	1

#	Article	IF	CITATIONS
541	High resolution measurements of density structures in the Jovian plasma sheet. Geophysical Research Letters, 1992, 19, 2281-2284.	4.0	13
542	Outer heliospheric radio emissions: 2. Foreshock source models. Journal of Geophysical Research, 1992, 97, 6245-6259.	3.3	23
543	The Galileo Plasma wave investigation. Space Science Reviews, 1992, 60, 341.	8.1	115
544	Tweaking the magnetosphere. Nature, 1992, 356, 18-19.	27.8	5
545	Distant magnetotails of the outer magnetic planets. Advances in Space Research, 1992, 12, 47-55.	2.6	9
546	Comparative observations of plasma waves at the outer planets. Advances in Space Research, 1992, 12, 83-90.	2.6	26
547	Plasma wave observations at Neptune. Advances in Space Research, 1992, 12, 47-54.	2.6	10
548	The Galileo Plasma Wave Investigation. , 1992, , 341-355.		12
549	Plasma waves in planetary magnetospheres. Journal of Geophysical Research, 1991, 96, 18977-18991.	3.3	68
550	Plasma wave generation near the inner heliospheric shock. Geophysical Research Letters, 1991, 18, 357-360.	4.0	24
551	Lowâ€frequency radio emissions in the outer heliosphere. Journal of Geophysical Research, 1991, 96, 3801-3806.	3.3	19
552	New observations of the low frequency interplanetary radio emissions. Geophysical Research Letters, 1991, 18, 1801-1804.	4.0	32
553	Micronâ€sized particles detected near Neptune by the Voyager 2 plasma wave instrument. Journal of Geophysical Research, 1991, 96, 19177-19186.	3.3	40
554	Remote sensing of Neptune's bow shock: Evidence for largeâ€ s cale shock motions. Journal of Geophysical Research, 1991, 96, 19153-19169.	3.3	12
555	Lightning and Plasma Wave Observations from the Galileo Flyby of Venus. Science, 1991, 253, 1522-1525.	12.6	71
556	Magnetospheric Radio and Plasma Wave Research: 1987–1990. Reviews of Geophysics, 1991, 29, 1075-1086.	23.0	11
557	Voyager plasma wave observations near the outer planets. Advances in Space Research, 1991, 11, 59-68.	2.6	4
558	The great solar storms of 1989. Nature, 1991, 353, 705-706.	27.8	4

#	Article	IF	CITATIONS
559	Spacelab 2 Plasma Diagnostics Package. Journal of Spacecraft and Rockets, 1990, 27, 70-75.	1.9	7
560	Whistlers in Neptune's magnetosphere: Evidence of atmospheric lightning. Journal of Geophysical Research, 1990, 95, 20967-20976.	3.3	91
561	Source location of the narrowbanded radio bursts at Uranus: Evidence of a cusp source. Geophysical Research Letters, 1990, 17, 295-298.	4.0	7
562	Lowâ€frequency radio emissions at Neptune. Geophysical Research Letters, 1990, 17, 1649-1652.	4.0	18
563	Comparison of plasma wave measurements in the bow shocks at Earth, Jupiter, Saturn, Uranus and Neptune. Geophysical Research Letters, 1990, 17, 1653-1656.	4.0	15
564	Electrostatic electron and ion cyclotron harmonic waves in Neptune's magnetosphere. Geophysical Research Letters, 1990, 17, 1657-1660.	4.0	22
565	Continuum radiation at Uranus. Journal of Geophysical Research, 1990, 95, 1103-1111.	3.3	4
566	Theory and observations of electrostatic ion waves in the cold Io torus. Journal of Geophysical Research, 1990, 95, 6443-6450.	3.3	12
567	Beamâ€generated upper hybrid noise in Jupiter's outer magnetosphere. Journal of Geophysical Research, 1990, 95, 8177-8186.	3.3	5
568	<i>Z</i> mode radiation in Jupiter's magnetosphere: The source of Jovian continuum radiation. Journal of Geophysical Research, 1990, 95, 8187-8196.	3.3	12
569	Radio Noise in the Heliospheric Cavity. COSPAR Colloquia Series, 1990, , 267-275.	0.2	16
570	Jovian plasma sheet density profile from lowâ€frequency radio waves. Journal of Geophysical Research, 1989, 94, 3495-3503.	3.3	5
571	Plasma waves in the magnetotail of Uranus. Journal of Geophysical Research, 1989, 94, 3505-3512.	3.3	10
572	Impulsive solar windâ€driven emission from Uranus. Journal of Geophysical Research, 1989, 94, 5255-5263.	3.3	19
573	The plasma wake of the shuttle orbiter. Journal of Geophysical Research, 1989, 94, 6866-6872.	3.3	30
574	Jovian type III radio bursts. Journal of Geophysical Research, 1989, 94, 6917-6924.	3.3	35
575	Electron velocity distributions and plasma waves associated with the injection of an electron beam into the ionosphere. Journal of Geophysical Research, 1989, 94, 6995-7001.	3.3	15
576	Plasma density fluctuations observed during Space Shuttle Orbiter water releases. Journal of Geophysical Research, 1989, 94, 12081-12086.	3.3	8

#	Article	IF	CITATIONS
577	Electrostatic waves in the bow shock at Uranus. Journal of Geophysical Research, 1989, 94, 13367-13376.	3.3	6
578	First Plasma Wave Observations at Neptune. Science, 1989, 246, 1494-1498.	12.6	91
579	Plasma wave turbulence around the shuttle: Results from the Spacelabâ€2 flight. Geophysical Research Letters, 1988, 15, 760-763.	4.0	28
580	Gaseous environment of the Shuttle early in the Spacelab 2 mission. Journal of Spacecraft and Rockets, 1988, 25, 169-174.	1.9	16
581	Longâ€period dynamic spectrograms of lowâ€frequency interplanetary radio emissions. Geophysical Research Letters, 1987, 14, 49-52.	4.0	55
582	Polarization of lowâ€frequency electromagnetic radiation in the lobes of Jupiter's magnetotail. Journal of Geophysical Research, 1987, 92, 4701-4705.	3.3	13
583	<i>Z</i> mode radiation in Jupiter's magnetosphere. Journal of Geophysical Research, 1987, 92, 9978-9996.	3.3	15
584	Reply [to "Comment on â€~Periodic amplitude variations in Jovian continuum radiation' by W. S. Kurth et al.â€]. Journal of Geophysical Research, 1987, 92, 11273-11276.	3.3	3
585	Micronâ€sized particle impacts detected near Uranus by the Voyager 2 Plasma Wave Instrument. Journal of Geophysical Research, 1987, 92, 14959-14968.	3.3	59
586	Plasma wave measurements in the magnetosphere of Uranus. Journal of Geophysical Research, 1987, 92, 15217-15224.	3.3	21
587	Electrostatic waves in the magnetosphere of Uranus. Journal of Geophysical Research, 1987, 92, 15225-15233.	3.3	38
588	Whistler mode emissions in the Uranian radiation belts. Journal of Geophysical Research, 1987, 92, 15234-15248.	3.3	40
589	Whistlerâ€mode radiation from the Spacelab 2 electron beam. Geophysical Research Letters, 1986, 13, 225-228.	4.0	81
590	Sporadic narrowband radio emissions from Uranus. Journal of Geophysical Research, 1986, 91, 11958-11964.	3.3	22
591	Periodic amplitude variations in Jovian continuum radiation. Journal of Geophysical Research, 1986, 91, 13523-13530.	3.3	8
592	Measurements of plasma parameters in the vicinity of the space shuttle. Planetary and Space Science, 1986, 34, 993-1004.	1.7	51
593	First Plasma Wave Observations at Uranus. Science, 1986, 233, 106-109.	12.6	111
594	A summary of whistlers observed by Voyager 1 at Jupiter. Icarus, 1985, 61, 497-507.	2.5	42

#	Article	IF	CITATIONS
595	High time resolution plasma wave and magnetic field observations of the Jovian bow shock. Geophysical Research Letters, 1985, 12, 183-186.	4.0	36
596	Effects of chemical releases by the STS 3 Orbiter on the ionosphere. Journal of Geophysical Research, 1985, 90, 3487-3497.	3.3	54
597	Particle acceleration in Saturn's outer magnetosphere: In memoriam Alois Schardt. Journal of Geophysical Research, 1985, 90, 8539-8542.	3.3	10
598	Voyager observations of lower hybrid noise in the Io plasma torus and anomalous plasma heating rates. Astrophysical Journal, 1985, 289, 392.	4.5	31
599	Detection of a radio emission at 3 kHz in the outer heliosphere. Nature, 1984, 312, 27-31.	27.8	172
600	Chorusâ€related electrostatic bursts at Jupiter and Saturn. Journal of Geophysical Research, 1984, 89, 75-83.	3.3	23
601	Analysis of chorus emissions at Jupiter. Journal of Geophysical Research, 1984, 89, 3801-3820.	3.3	32
602	Narrowband electromagnetic emissions from Jupiter's magnetosphere. Nature, 1983, 302, 385-388.	27.8	46
603	Micron-sized particles detected near Saturn by the Voyager plasma wave instrument. Icarus, 1983, 53, 236-254.	2.5	203
604	A search for Saturn electrostatic discharges in the Voyager plasma wave data. Icarus, 1983, 53, 255-261.	2.5	12
605	Terrestrial versus Jovian VLF chorus; A comparative study. Journal of Geophysical Research, 1983, 88, 6171-6180.	3.3	27
606	Structure and other properties of Jupiter's distant magnetotail. Journal of Geophysical Research, 1983, 88, 8801-8815.	3.3	54
607	A survey of electrostatic waves in Saturn's magnetosphere. Journal of Geophysical Research, 1983, 88, 8959-8970.	3.3	48
608	Voyager plasma wave measurements at Saturn. Journal of Geophysical Research, 1983, 88, 8971-8984.	3.3	28
609	Voyager 2 Plasma Wave Observations at Saturn. Science, 1982, 215, 587-594.	12.6	115
610	Detection of nonthermal continuum radiation in Saturn's magnetosphere. Geophysical Research Letters, 1982, 9, 889-892.	4.0	24
611	Detailed observations of the source of terrestrial narrowband electromagnetic radiation. Geophysical Research Letters, 1982, 9, 1341-1344.	4.0	57
612	The structure of Titan's wake from plasma wave observations. Journal of Geophysical Research, 1982, 87, 1395-1403.	3.3	64

#	Article	IF	CITATIONS
613	Observations of Jupiter's distant magnetotail and wake. Journal of Geophysical Research, 1982, 87, 10373-10383.	3.3	48
614	Generation of nonthermal continuum radiation in the magnetosphere. Journal of Geophysical Research, 1982, 87, 10457-10462.	3.3	20
615	Plasma Waves Near Saturn: Initial Results from Voyager 1. Science, 1981, 212, 235-239.	12.6	166
616	Escaping nonthermal continuum radiation. Journal of Geophysical Research, 1981, 86, 5519-5531.	3.3	106
617	Measurements of plasma wave spectra in Jupiter's magnetosphere. Journal of Geophysical Research, 1981, 86, 8181-8198.	3.3	51
618	Determination of Jupiter's electron density profile from plasma wave observations. Journal of Geophysical Research, 1981, 86, 8199-8212.	3.3	82
619	Broadband electrostatic noise and fieldâ€aligned currents in Jupiter's middle magnetosphere. Journal of Geophysical Research, 1981, 86, 8357-8369.	3.3	53
620	Voyager observations of Jupiter's distant magnetotail. Journal of Geophysical Research, 1981, 86, 8402-8412.	3.3	37
621	Parametric interaction and spatial collapse of beamâ€driven Langmuir waves in the solar wind. Journal of Geophysical Research, 1981, 86, 8833-8841.	3.3	132
622	Jupiter tail phenomena upstream from Saturn. Nature, 1981, 292, 585-586.	27.8	55
623	Narrowband electromagnetic emissions from Saturn's magnetosphere. Nature, 1981, 292, 733-737.	27.8	61
624	Control of Saturn's kilometric radiation by Dione. Nature, 1981, 292, 742-745.	27.8	28
625	Plasma wave turbulence at planetary bow shocks. Nature, 1981, 292, 747-750.	27.8	22
626	An Upper Bound to the Lightning Flash Rate in Jupiter's Atmosphere. Science, 1981, 213, 684-685.	12.6	28
627	Detection of Jovian whistler mode chorus; Implications for the Io torus aurora. Geophysical Research Letters, 1980, 7, 45-48.	4.0	63
628	The structure of the Jovian magnetotail from plasma wave observations. Geophysical Research Letters, 1980, 7, 53-56.	4.0	68
629	Electrostatic waves in the Jovian magnetosphere. Geophysical Research Letters, 1980, 7, 57-60.	4.0	80
630	Spatial and temporal studies of Jovian kilometric radiation. Geophysical Research Letters, 1980, 7, 61-64.	4.0	35

#	Article	IF	CITATIONS
631	Observations of a freeâ€energy source for intense electrostatic waves. Geophysical Research Letters, 1980, 7, 293-296.	4.0	29
632	Superthermal electrons and Bernstein waves in Jupiter's inner magnetosphere. Journal of Geophysical Research, 1980, 85, 6729-6742.	3.3	47
633	Jupiter Plasma Wave Observations: An Initial Voyager 1 Overview. Science, 1979, 204, 991-995.	12.6	208
634	Plasma Wave Observations Near Jupiter: Initial Results from Voyager 2. Science, 1979, 206, 987-991.	12.6	80
635	Auroral hiss observed near the Io plasma torus. Nature, 1979, 280, 767-770.	27.8	41
636	Plasma wave turbulence at Jupiter's bow shock. Nature, 1979, 280, 796-797.	27.8	15
637	A comparison of intense electrostatic waves near f _{UHR} with linear instability theory. Geophysical Research Letters, 1979, 6, 487-490.	4.0	54
638	Whistlers observed by Voyager 1: Detection of lightning on Jupiter. Geophysical Research Letters, 1979, 6, 511-514.	4.0	137
639	Pitchâ€angle diffusion by whistler mode waves near the Io plasma torus. Geophysical Research Letters, 1979, 6, 653-656.	4.0	33
640	Low frequency radio emissions from Jupiter: Jovian kilometric radiation. Geophysical Research Letters, 1979, 6, 747-750.	4.0	21
641	Electron distribution functions associated with electrostatic emissions in the dayside magnetosphere. Geophysical Research Letters, 1979, 6, 781-784.	4.0	19
642	Structure and properties of Jupiter's magnetoplasmadisc. Geophysical Research Letters, 1979, 6, 785-788.	4.0	54
643	The heliocentric radial variation of plasma oscillations associated with Type III radio bursts. Journal of Geophysical Research, 1978, 83, 4147-4152.	3.3	41
644	Direction finding measurements of type III bursts in both elevation and azimuth. Solar Physics, 1976, 46, 475-475.	2.5	2
645	Direction-finding measurements of type III radio bursts out of the ecliptic plane. Solar Physics, 1976, 48, 361-380.	2.5	24
646	Direction-finding measurements of auroral kilometric radiation. Journal of Geophysical Research, 1975, 80, 2764-2770.	3.3	169
647	Plasma Wave Observations at Earth, Jupiter, and Saturn. Geophysical Monograph Series, 0, , 415-430.	0.1	12
648	Discrete Electromagnetic Emissions in Planetary Magnetospheres. Geophysical Monograph Series, 0, , 81-117.	0.1	15

#	Article	IF	CITATIONS
649	Enceladus and Titan: emerging worlds of the Solar System. Experimental Astronomy, 0, , 1.	3.7	1