Manuel A Del Pino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501447/publications.pdf

Version: 2024-02-01

157 papers 6,527 citations

39 h-index 76900 74 g-index

159 all docs

159 docs citations

159 times ranked 1242 citing authors

#	Article	IF	CITATIONS
1	Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and Partial Differential Equations, 1996, 4, 121-137.	1.7	609
2	Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. Journal Des Mathematiques Pures Et Appliquees, 2002, 81, 847-875.	1.6	251
3	A homotopic deformation along p of a Leray-Schauder degree result and existence for $(\hat{A}^{\dagger}_{1}u\hat{a}\in \hat{A}^{\dagger}_{1}p\hat{a}^{2}\hat{a}\in \hat{A}^{\dagger}_{2}p\hat{a}^{2})\hat{a}\in \hat{A}^{\dagger}_{1}$ \hat{A}^{\dagger}_{2} \hat{A}^{\dagger}_{3} 2u $\hat{a}\in \hat{A}^{\dagger}_{2}$ \hat{A}^{\dagger}_{3} 2u $\hat{a}\in \hat{A}^{\dagger}_{3}$ 2u $\hat{a}\in \hat{A}^{\dagger}_{3}$ \hat{A}^{\dagger}_{3} 2u $\hat{a}\in \hat{A}^{\dagger}_{3}$ \hat{A}^{\dagger}_{3} 2u $\hat{a}\in \hat{A}^{\dagger}_{3}$ \hat{A}^{\dagger}_{3} 2u $\hat{a}\in \hat{A}^{\dagger}_{3}$ \hat{A}^{\dagger}_{3} 2u $\hat{a}\in \hat{A}^{\dagger}_{3}$ 2u $\hat{a}\in \hat{A}^{\dagger}_$	⁺ 2.2	244
4	Multi-peak bound states for nonlinear Schrödinger equations. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 1998, 15, 127-149.	1.4	242
5	Semi-classical States for Nonlinear SchrĶdinger Equations. Journal of Functional Analysis, 1997, 149, 245-265.	1.4	239
6	Concentrating standing waves for the fractional nonlinear Schr $\tilde{A}\P$ dinger equation. Journal of Differential Equations, 2014, 256, 858-892.	2.2	180
7	Two-bubble solutions in the super-critical Bahri-Coron's problem. Calculus of Variations and Partial Differential Equations, 2003, 16, 113-145.	1.7	172
8	On De Giorgi's conjecture in dimension N≥9. Annals of Mathematics, 2011, 174, 1485-1569.	4.2	165
9	Singular limits in Liouville-type equations. Calculus of Variations and Partial Differential Equations, 2005, 24, 47-81.	1.7	161
10	Semi-classical states of nonlinear Schr $\tilde{A}\P$ dinger equations: a variational reduction method. Mathematische Annalen, 2002, 324, 1-32.	1.4	154
11	Global bifurcation from the eigenvalues of the p-Laplacian. Journal of Differential Equations, 1991, 92, 226-251.	2.2	144
12	Concentration on curves for nonlinear Schr \tilde{A} ¶dinger Equations. Communications on Pure and Applied Mathematics, 2007, 60, 113-146.	3.1	135
13	The optimal Euclidean Lp-Sobolev logarithmic inequality. Journal of Functional Analysis, 2003, 197, 151-161.	1.4	120
14	Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition. Proceedings of the American Mathematical Society, 1991, 112, 81-86.	0.8	100
15	Existence and multiplicity of solutions with prescribed period for a second order quasilinear O.D.E Nonlinear Analysis: Theory, Methods & Applications, 1992, 18, 79-92.	1.1	98
16	On the Role of Mean Curvature in Some Singularly Perturbed Neumann Problems. SIAM Journal on Mathematical Analysis, 1999, 31, 63-79.	1.9	96
17	Concentration phenomena for the nonlocal Schr \tilde{A} q dinger equation with Dirichlet datum. Analysis and PDE, 2015, 8, 1165-1235.	1.4	91
18	Infinitely Many T-Periodic Solutions for a Problem Arising in Nonlinear Elasticity. Journal of Differential Equations, 1993, 103, 260-277.	2.2	90

#	Article	IF	CITATIONS
19	T-periodic solutions for some second order differential equations with singularities. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1992, 120, 231-243.	1.2	84
20	Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana University Mathematics Journal, 1999, 48, 0-0.	0.9	84
21	The Fredholm Alternative at the First Eigenvalue for the One Dimensionalp-Laplacian. Journal of Differential Equations, 1999, 151, 386-419.	2.2	70
22	Multiple-end solutions to the Allen–Cahn equation in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> . Journal of Functional Analysis, 2010, 258, 458-503.	1.4	70
23	Large energy entire solutions for the Yamabe equation. Journal of Differential Equations, 2011, 251, 2568-2597.	2.2	70
24	Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity. Communications in Mathematical Physics, 2000, 210, 413-446.	2.2	68
25	The influence of domain geometry in boundary blow-up elliptic problems. Nonlinear Analysis: Theory, Methods & Applications, 2002, 48, 897-904.	1.1	68
26	A global estimate for the gradient in a singular elliptic boundary value problem. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1992, 122, 341-352.	1.2	63
27	"Bubble-tower―radial solutions in the slightly supercritical Brezis–Nirenberg problem. Journal of Differential Equations, 2003, 193, 280-306.	2.2	60
28	Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the -Laplacian. Comptes Rendus Mathematique, 2002, 334, 365-370.	0.3	59
29	Nondegeneracy of the bubble in the critical case for nonlocal equations. Proceedings of the American Mathematical Society, 2013, 141, 3865-3870.	0.8	59
30	Multi-Peak Solutions for Super-Critical Elliptic Problems in Domains with Small Holes. Journal of Differential Equations, 2002, 182, 511-540.	2.2	54
31	The Toda System and Clustering Interfaces in the Allen–Cahn equation. Archive for Rational Mechanics and Analysis, 2008, 190, 141-187.	2.4	49
32	Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 1996, 13, 95-115.	1.4	48
33	ASYMPTOTIC BEHAVIOR OF BEST CONSTANTS AND EXTREMALS FOR TRACE EMBEDDINGS IN EXPANDING DOMAINS1*. Communications in Partial Differential Equations, 2001, 26, 2189-2210.	2.2	46
34	On the role of distance function in some singular perturbation problems. Communications in Partial Differential Equations, 2000, 25, 155-177.	2.2	44
35	Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality. Journal of Mathematical Analysis and Applications, 2004, 293, 375-388.	1.0	43
36	The Toda system and multiple-end solutions of autonomous planar elliptic problems. Advances in Mathematics, 2010, 224, 1462-1516.	1.1	43

3

#	Article	IF	CITATIONS
37	Super-critical boundary bubbling in a semilinear Neumann problem. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2005, 22, 45-82.	1.4	42
38	On the extinction profile for solutions of $u_t=Delta u^{(N-2)/(N+2)}$. Indiana University Mathematics Journal, 2001, 50, 611-628.	0.9	41
39	On a singular diffusion equation. Communications in Analysis and Geometry, 1995, 3, 523-542.	0.4	41
40	MULTI-BUBBLE SOLUTIONS FOR SLIGHTLY SUPER-CRITICAL ELLIPTIC PROBLEMS IN DOMAINS WITH SYMMETRIES. Bulletin of the London Mathematical Society, 2003, 35, 513-521.	0.8	40
41	Multi-peak solutions for some singular perturbation problems. Calculus of Variations and Partial Differential Equations, 2000, 10, 119-134.	1.7	39
42	Collapsing steady states of the Keller–Segel system. Nonlinearity, 2006, 19, 661-684.	1.4	39
43	Interface Foliation near Minimal Submanifolds in Riemannian Manifolds with Positive Ricci Curvature. Geometric and Functional Analysis, 2010, 20, 918-957.	1.8	39
44	The Brezis–Nirenberg problem near criticality in dimension 3. Journal Des Mathematiques Pures Et Appliquees, 2004, 83, 1405-1456.	1.6	38
45	On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem. Journal of Differential Equations, 1992, 95, 240-258.	2.2	37
46	Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature in $R^2\$. Journal of Differential Geometry, 2013, 93, .	1.1	37
47	The Supercritical Lane–Emden–Fowler Equation in Exterior Domains. Communications in Partial Differential Equations, 2007, 32, 1225-1243.	2.2	36
48	New solutions for Trudingerâ€"Moser critical equations in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi overflow="scroll"><mml:msup><mml:mi <mml:mn="">2</mml:mi></mml:msup></mml:mi></mml:msup></mml:math> . Journal of	1.4	36
49	Functional Analysis, 2010, 258, 421-457. Positive solutions of a semilinear elliptic equation on a compact manifold. Nonlinear Analysis: Theory, Methods & Applications, 1994, 22, 1423-1430.	1.1	35
50	Supercritical elliptic problems in domains with small holes. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2007, 24, 507-520.	1.4	35
51	Fast and slow decay solutions for supercritical elliptic problems in exterior domains. Calculus of Variations and Partial Differential Equations, 2008, 32, 453-480.	1.7	35
52	THE GIERER & MEINHARDT SYSTEM: THE BREAKING OF HOMOCLINICS AND MULTI-BUMP GROUND STATES. Communications in Contemporary Mathematics, 2001, 03, 419-439.	1.2	34
53	Delaunay-type singular solutions for the fractional Yamabe problem. Mathematische Annalen, 2017, 369, 597-626.	1.4	33
54	Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and Partial Differential Equations, 1996, 4, 121-137.	1.7	33

#	Article	IF	Citations
55	Nondegeneracy of entire solutions of a singular Liouvillle equation. Proceedings of the American Mathematical Society, 2012, 140, 581-588.	0.8	32
56	The problem of uniqueness of the limit in a semilinear heat equation. Communications in Partial Differential Equations, 1999, 24, 2147-2172.	2.2	31
57	Multi-bump ground states ofÂtheÂGierer–Meinhardt system in â"2. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2003, 20, 53-85.	1.4	31
58	A logarithmic Hardy inequality. Journal of Functional Analysis, 2010, 259, 2045-2072.	1.4	31
59	Gluing Methods for Vortex Dynamics in Euler Flows. Archive for Rational Mechanics and Analysis, 2020, 235, 1467-1530.	2.4	31
60	On Nonlinear Parabolic Equations of Very Fast Diffusion. Archive for Rational Mechanics and Analysis, 1997, 137, 363-380.	2.4	30
61	Ground states of semilinear elliptic equations: a geometric approach. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2000, 17, 551-581.	1.4	28
62	Standing waves for supercritical nonlinear SchrĶdinger equations. Journal of Differential Equations, 2007, 236, 164-198.	2,2	28
63	Intermediate reduction method and infinitely many positive solutions of nonlinear SchrA¶dinger equations with non-symmetric potentials. Calculus of Variations and Partial Differential Equations, 2015, 53, 473-523.	1.7	28
64	Variational reduction for Ginzburg–Landau vortices. Journal of Functional Analysis, 2006, 239, 497-541.	1.4	27
65	Two-dimensional Euler flows with concentrated vorticities. Transactions of the American Mathematical Society, 2010, 362, 6381-6381.	0.9	27
66	Type II ancient compact solutions to the Yamabe flow. Journal Fur Die Reine Und Angewandte Mathematik, 2018, 2018, 1-71.	0.9	27
67	Serrin's overdetermined problem and constant mean curvature surfaces. Duke Mathematical Journal, 2015, 164, .	1.5	26
68	Radially symmetric internal layers in a semilinear elliptic system. Transactions of the American Mathematical Society, 1995, 347, 4807-4837.	0.9	25
69	Bubbling along boundary geodesics near the second critical exponent. Journal of the European Mathematical Society, 2010, 12, 1553-1605.	1.4	25
70	Nonlocal \$s\$-minimal surfaces and Lawson cones. Journal of Differential Geometry, 2018, 109, .	1.1	25
71	Singularity formation for the two-dimensional harmonic map flow into \$\$\$^2\$\$. Inventiones Mathematicae, 2020, 219, 345-466.	2.5	24
72	Title is missing!. Indiana University Mathematics Journal, 1994, 43, 77.	0.9	24

#	Article	IF	CITATIONS
73	Title is missing!. Indiana University Mathematics Journal, 1994, 43, 703.	0.9	24
74	Least energy solutions for elliptic equations in unbounded domains. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1996, 126, 195-208.	1.2	23
75	Existence of positive bound states of nonlinear Schr \tilde{A} q dinger equations with saddle-like potential. Nonlinear Analysis: Theory, Methods & Applications, 1998, 34, 979-989.	1.1	23
76	Concentrating solutions in a two-dimensional elliptic problem with exponential Neumann data. Journal of Functional Analysis, 2005, 227, 430-490.	1.4	23
77	Traveling Waves with Multiple and Nonconvex Fronts for a Bistable Semilinear Parabolic Equation. Communications on Pure and Applied Mathematics, 2013, 66, 481-547.	3.1	23
78	Nonlocal Delaunay surfaces. Nonlinear Analysis: Theory, Methods & Applications, 2016, 137, 357-380.	1.1	23
79	On the Cauchy problem for \$u_t =Deltalog u\$ in higher dimensions. Mathematische Annalen, 1999, 313, 189-206.	1.4	22
80	Resonance and Interior Layers in an Inhomogeneous Phase Transition Model. SIAM Journal on Mathematical Analysis, 2007, 38, 1542-1564.	1.9	22
81	A counterexample to a conjecture by De Giorgi in large dimensions. Comptes Rendus Mathematique, 2008, 346, 1261-1266.	0.3	22
82	Effect of androgens combined with hormone therapy on quality of life in post-menopausal women with sexual dysfunction. Gynecological Endocrinology, 2008, 24, 691-695.	1.7	22
83	Ground states of a prescribed mean curvature equation. Journal of Differential Equations, 2007, 241, 112-129.	2.2	21
84	Boundary singularities for weak solutions of semilinear elliptic problems. Journal of Functional Analysis, 2007, 253, 241-272.	1.4	21
85	Large mass boundary condensation patterns in the stationary Keller–Segel system. Journal of Differential Equations, 2016, 261, 3414-3462.	2.2	21
86	Local minimizers for the Ginzburg-Landau energy. Mathematische Zeitschrift, 1997, 225, 671-684.	0.9	20
87	Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality. International Mathematics Research Notices, 2004, 2004, 1511.	1.0	20
88	Non-uniqueness of positive ground states of non-linear Schr $\tilde{A}\P$ dinger equations. Proceedings of the London Mathematical Society, 2013, 106, 318-344.	1.3	20
89	Type II Blow-up in the 5-dimensional Energy Critical Heat Equation. Acta Mathematica Sinica, English Series, 2019, 35, 1027-1042.	0.6	20
90	Layers With Nonsmooth Interface in a Semilinear Elliptic Problem. Communications in Partial Differential Equations, 1992, 17, 1695-1708.	2.2	19

#	Article	IF	CITATIONS
91	On the blow-up set for u_t=du^m+u^m, m>1. Indiana University Mathematics Journal, 1998, 47, 0-0.	0.9	18
92	An elementary construction of complex patterns in nonlinear Schr\$ouml\$dinger equations. Nonlinearity, 2002, 15, 1653-1671.	1.4	18
93	Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents. Journal of the European Mathematical Society, 2014, 16, 1687-1748.	1.4	18
94	Moduli space theory for the Allen-Cahn equation in the plane. Transactions of the American Mathematical Society, 2013, 365, 721-766.	0.9	17
95	Beyond the Trudinger-Moser supremum. Calculus of Variations and Partial Differential Equations, 2012, 44, 543-576.	1.7	17
96	Finite topology self-translating surfaces for the mean curvature flow in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><td>1.1 nl:msup> <</td><td>17 /mml:math>.</td></mml:mrow></mml:msup></mml:math>	1.1 nl:msup> <	17 /mml:math>.
97	Advances in Mathematics, 2017, 320, 674-729. Infinite-time blow-up for the 3-dimensional energy-critical heat equation. Analysis and PDE, 2020, 13, 215-274.	1.4	17
98	Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation. Transactions of the American Mathematical Society, 2021, 374, 6665-6689.	0.9	17
99	Supercritical elliptic problems from a perturbation viewpoint. Discrete and Continuous Dynamical Systems, 2008, 21, 69-89.	0.9	17
100	Multiple boundary blow-up solutions for nonlinear elliptic equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2003, 133, 225-235.	1.2	16
101	Green's function and infinite-time bubbling in the critical nonlinear heat equation. Journal of the European Mathematical Society, 2019, 22, 283-344.	1.4	16
102	Multiple solutions for the \$p\$-Laplacian under global nonresonance. Proceedings of the American Mathematical Society, 1991, 112, 131-131.	0.8	15
103	Multiple solutions for a non-homogeneous elliptic equation at the critical exponent. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2004, 134, 69-87.	1.2	15
104	The two-dimensional Lazer–McKenna conjecture for an exponential nonlinearity. Journal of Differential Equations, 2006, 231, 108-134.	2.2	15
105	Boundary spikes in the Gierer-Meinhardt system. Communications on Pure and Applied Analysis, 2002, 1, 437-456.	0.8	13
106	Type II collapsing of maximal solutions to the Ricci flow in R2. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2007, 24, 851-874.	1.4	13
107	On De Giorgi's conjecture and beyond. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6845-6850.	7.1	13
108	On the short-time behavior of the free boundary of a porous medium equation. Duke Mathematical Journal, 1997, 87, 133.	1.5	12

#	Article	IF	Citations
109	Local bifurcation from the second eigenvalue of the Laplacian in a square. Proceedings of the American Mathematical Society, 2003, 131, 3499-3505.	0.8	12
110	Solutions of the Allen-Cahn equation which are invariant under screw-motion. Manuscripta Mathematica, 2012, 138, 273-286.	0.6	12
111	Nontopological Condensates for the Selfâ€Dual Chernâ€Simonsâ€Higgs Model. Communications on Pure and Applied Mathematics, 2015, 68, 1191-1283.	3.1	12
112	Type I ancient compact solutions of the Yamabe flow. Nonlinear Analysis: Theory, Methods & Applications, 2016, 137, 338-356.	1.1	12
113	Asymptotic behavior of nonlinear diffusions. Mathematical Research Letters, 2003, 10, 551-557.	0.5	12
114	Uniqueness and stability of regional blow-up in a porous-medium equation. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2002, 19, 927-960.	1.4	11
115	Singular Limits of a Two-Dimensional Boundary Value Problem Arising in Corrosion Modelling. Archive for Rational Mechanics and Analysis, 2006, 182, 181-221.	2.4	11
116	Solutions with multiple catenoidal ends to the Allenâ€"Cahn equation in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><td>1.6 nl:msup> <</td><td>11 /mml:math>.</td></mml:msup></mml:math>	1.6 nl:msup> <	11 /mml:math>.
117	Journal Des Mathematiques Pures Et Appliquees, 2015, 103, 142-218. Solutions of the fractional Allen–Cahn equation which are invariant under screw motion. Journal of the London Mathematical Society, 2016, 94, 295-313.	1.0	11
118	Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete and Continuous Dynamical Systems, 2006, 16, 525-539.	0.9	10
119	The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28, 975-1006.	0.9	10
120	Bistable Boundary Reactions in Two Dimensions. Archive for Rational Mechanics and Analysis, 2011, 200, 89-140.	2.4	9
121	Large conformal metrics with prescribed sign-changing Gauss curvature. Calculus of Variations and Partial Differential Equations, 2015, 54, 763-789.	1.7	9
122	Existence and stability of infinite time bubble towers in the energy critical heat equation. Analysis and PDE, 2021, 14, 1557-1598.	1.4	9
123	Nonlinear Elliptic Problems Above Criticality. Milan Journal of Mathematics, 2006, 74, 313-338.	1.1	8
124	AN INTRODUCTION TO THE FINITE AND INFINITE DIMENSIONAL REDUCTION METHODS. Lecture Notes Series, Institute for Mathematical Sciences, 2016, , 35-118.	0.2	8
125	Multiple solutions for a semilinear elliptic equation. Transactions of the American Mathematical Society, 1995, 347, 4839-4853.	0.9	7
126	Solvability of the Neumann Problem in a Ball for $\hat{a}^{\hat{i}}$ (u+u $\hat{a}^{\hat{i}}$ v=h(x),v>1. Journal of Differential Equations, 1996, 124, 108-131.	2.2	7

#	Article	IF	CITATIONS
127	A Phase Plane Analysis of the ?Multi-Bubbling? Phenomenon in Some Slightly Supercritical Equations. Monatshefte Fur Mathematik, 2004, 142, 57-79.	0.9	7
128	Type \hat{a} ; finite time blow-up for the energy critical heat equation in <inline-formula><tex-math id="M1">egin{document}\$ mathbb{R}^4 \$end{document}</tex-math></inline-formula>. Discrete and Continuous Dynamical Systems, 2020, 40, 3327-3355.	0.9	7
129	Multiple Solutions for the p-Laplacian Under Global Nonresonance. Proceedings of the American Mathematical Society, 1991, 112, 131.	0.8	6
130	Solutions to the Allen Cahn Equation and Minimal Surfaces. Milan Journal of Mathematics, 2011, 79, 39-65.	1.1	6
131	The Euclidean Onofri Inequality in Higher Dimensions. International Mathematics Research Notices, 2013, 2013, 3600-3611.	1.0	6
132	Long-time asymptotics for evolutionary crystal dislocation models. Advances in Mathematics, 2020, 371, 107242.	1.1	6
133	Geometry driven type II higher dimensional blow-up for the critical heat equation. Journal of Functional Analysis, 2021, 280, 108788.	1.4	6
134	Travelling helices and the vortex filament conjecture in the incompressible Euler equations. Calculus of Variations and Partial Differential Equations, 2022, 61, .	1.7	6
135	Radially Symmetric Internal Layers in a Semilinear Elliptic System. Transactions of the American Mathematical Society, 1995, 347, 4807.	0.9	5
136	The Fredholm alternative at the first eigenvalue for the one-dimensional p-Laplacian. Comptes Rendus Mathematique, 1998, 327, 461-465.	0.5	5
137	Bubbling Blow-Up in Critical Parabolic Problems. Lecture Notes in Mathematics, 2017, , 73-116.	0.2	5
138	Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3. Journal D'Analyse Mathematique, 2019, 137, 813-843.	0.8	5
139	Multiple bubbling for the exponential nonlinearity in the slightly supercritical case. Communications on Pure and Applied Analysis, 2006, 5, 463-482.	0.8	5
140	Multiple Solutions for a Semilinear Elliptic Equation. Transactions of the American Mathematical Society, 1995, 347, 4839.	0.9	4
141	Ancient multiple-layer solutions to the Allen–Cahn equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2018, 148, 1165-1199.	1.2	4
142	A Phase Plane Analysis of the "Multi-Bubbling―Phenomenon in Some Slightly Supercritical Equations. , 2004, , 57-79.		4
143	New type I ancient compact solutions of the Yamabe flow. Mathematical Research Letters, 2017, 24, 1667-1691.	0.5	4
144	Nonradial solvability structure of super-diffusive nonlinear parabolic equations. Transactions of the American Mathematical Society, 2001, 354, 1583-1599.	0.9	3

#	Article	IF	CITATIONS
145	Nonlinear SchrĶdinger equations: concentration on weighted geodesics in the semi-classical limit. Comptes Rendus Mathematique, 2005, 341, 223-228.	0.3	3
146	Renormalized energy of interacting Ginzburg-Landau vortex filaments. Journal of the London Mathematical Society, 2008, 77, 647-665.	1.0	3
147	Relative Equilibria in Continuous Stellar Dynamics. Communications in Mathematical Physics, 2010, 300, 765-788.	2.2	3
148	Higher-Dimensional Catenoid, Liouville Equation, and Allen–Cahn Equation. International Mathematics Research Notices, 0, , rnv350.	1.0	3
149	Ancient shrinking spherical interfaces in the Allen–Cahn flow. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2018, 35, 187-215.	1.4	3
150	Positive solutions of elliptic equations in with a super-subcritical nonlinearity. Comptes Rendus Mathematique, 2000, 330, 187-191.	0.5	2
151	Asymptotics of Sobolev embeddings and singular perturbations for the \$p\$-Laplacian. Proceedings of the American Mathematical Society, 2002, 130, 2931-2939.	0.8	2
152	Chapter 3 Bubbling in nonlinear elliptic problems near criticality. Handbook of Differential Equations: Stationary Partial Differential Equations, 2006, 3, 215-316.	0.7	2
153	On the behavior of positive solutions of semilinear elliptic equations in asymptotically cylindrical domains. Journal of Fixed Point Theory and Applications, 2017, 19, 205-213.	1.1	2
154	Interface Dynamics in Semilinear Wave Equations. Communications in Mathematical Physics, 2020, 373, 971-1009.	2.2	2
155	BUBBLING AND CRITICALITY IN TWO AND HIGHER DIMENSIONS. , 2005, , .		2
156	New Entire Solutions to Some Classical Semilinear Elliptic Problems. , 2011, , .		2
157	Catenoidal layers for the Allen-Cahn equation in bounded domains. Chinese Annals of Mathematics Series B, 2017, 38, 13-44.	0.4	1