
Rodolfo G Goya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5014423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1034-1039.	7.1	171
2	Why the neuroendocrine system is important in aging processes. Experimental Gerontology, 1987, 22, 1-15.	2.8	98
3	Growth Hormone Secretory Patterns in Young, Middle-Aged and Old Female Rats. Neuroendocrinology, 1987, 46, 137-142.	2.5	85
4	In vivo effects of growth hormone on thymus function in aging mice. Brain, Behavior, and Immunity, 1992, 6, 341-354.	4.1	81
5	Hormonal modulation of antioxidant enzyme activities in young and old rats. Experimental Gerontology, 1995, 30, 169-175.	2.8	73
6	Insulinâ€like growth factorâ€l gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. European Journal of Neuroscience, 2016, 44, 2120-2128.	2.6	69
7	Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential. Current Gene Therapy, 2012, 12, 116-126.	2.0	58
8	Gonadal function in aging rats and its relation to pituitary and mammary pathology. Mechanisms of Ageing and Development, 1990, 56, 77-88.	4.6	49
9	Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats. Neuroscience, 2015, 303, 189-199.	2.3	48
10	Expression of Transgenes in Normal and Neoplastic Anterior Pituitary Cells Using Recombinant Adenoviruses: Long Term Expression, Cell Cycle Dependency, and Effects on Hormone Secretion*. Endocrinology, 1997, 138, 2184-2194.	2.8	47
11	Homeostatic Thymus Hormone Stimulates Corticosterone Secretion in a Dose- and Age-Dependent Manner in Rats. Neuroendocrinology, 1990, 51, 59-63.	2.5	36
12	Differential effect of homeostatic thymus hormone on plasma thyrotropin and growth hormone in young and old rats. Mechanisms of Ageing and Development, 1989, 49, 119-128.	4.6	31
13	The Thymus–Neuroendocrine Axis. Annals of the New York Academy of Sciences, 2009, 1153, 98-106.	3.8	28
14	Therapeutic potential of IGF-I on hippocampal neurogenesis and function during aging. Neurogenesis (Austin, Tex), 2017, 4, e1259709.	1.5	28
15	The Immune-Neuroendocrine Homeostatic Network and Aging. Gerontology, 1991, 37, 208-213.	2.8	27
16	Quantitative Immunohistochemical Changes in the Endocrine Pancreas of Nonobese Diabetic (NOD) Mice. Pancreas, 1995, 11, 396-401.	1.1	27
17	The Thymus-Pituitary Axis and Its Changes during Aging. NeuroImmunoModulation, 1999, 6, 137-142.	1.8	27
18	Thymulin gene therapy prevents the reduction in circulating gonadotropins induced by thymulin deficiency in mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E182-E187.	3.5	26

#	Article	IF	CITATIONS
19	Differential Activity of Thymosin Peptides (Thymosin Fraction 5) on Plasma Thyrotropin in Female Rats of Different Ages. Neuroendocrinology, 1988, 47, 379-383.	2.5	25
20	Regional research priorities in brain and nervous system disorders. Nature, 2015, 527, S198-S206.	27.8	25
21	Use of recombinant herpes simplex virus type 1 vectors for gene transfer into tumour and normal anterior pituitary cells. Molecular and Cellular Endocrinology, 1998, 139, 199-207.	3.2	24
22	Immune-neuroendocrine interactions during aging: Age-dependent thyrotropin-inhibiting activity of thymosin peptides. Mechanisms of Ageing and Development, 1987, 41, 219-227.	4.6	23
23	Effects of Growth Hormone and Thyroxine on Thymulin Secretion in Aging Rats. Neuroendocrinology, 1993, 58, 338-343.	2.5	23
24	Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Research Reviews, 2017, 40, 168-181.	10.9	23
25	Effects of underfeeding and refeeding on GH and thyroid hormone secretion in young, middle-aged, and old rats. Experimental Gerontology, 1990, 25, 447-457.	2.8	22
26	Estrogen inhibits tuberoinfundibular dopaminergic neurons but does not cause irreversible damage. Brain Research Bulletin, 2009, 80, 347-352.	3.0	22
27	Homeostasis, Thymic Hormones and Aging. Gerontology, 1999, 45, 174-178.	2.8	21
28	Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus, 2017, 27, 435-449.	1.9	21
29	Diminished Diurnal Secretion of Corticosterone in Aging Female but Not Male Rats. Gerontology, 1989, 35, 181-187.	2.8	19
30	Stress-Induced Gene Expression Sensing Intracellular Heating Triggered by Magnetic Hyperthermia. Journal of Physical Chemistry C, 2016, 120, 7339-7348.	3.1	19
31	Thymulin and the neuroendocrine system. Peptides, 2004, 25, 139-142.	2.4	18
32	Thymulin stimulates prolactin and thyrotropin release in an age-related manner. Mechanisms of Ageing and Development, 1998, 104, 249-262.	4.6	17
33	The Emerging View of Aging as a Reversible Epigenetic Process. Gerontology, 2017, 63, 426-431.	2.8	16
34	Rejuvenation by cell reprogramming: a new horizon in gerontology. Stem Cell Research and Therapy, 2018, 9, 349.	5.5	16
35	A comparison between hormone levels and T lymphocyte function in young and old rats. Mechanisms of Ageing and Development, 1991, 61, 275-285.	4.6	15
36	Effect of the Corticotrophin Releasing Hormone Precursor on Interleukin-6 Release by Human Mononuclear Cells. Clinical Immunology and Immunopathology, 1997, 85, 35-39.	2.0	15

#	Article	IF	CITATIONS
37	Altered Functional Responses with Preserved Morphology of Gonadotrophic Cells in Congenitally Athymic Mice. Brain, Behavior, and Immunity, 2001, 15, 85-92.	4.1	15
38	Hypothalamic IGF-I Gene Therapy Prolongs Estrous Cyclicity and Protects Ovarian Structure in Middle-Aged Female Rats. Endocrinology, 2013, 154, 2166-2173.	2.8	15
39	Gene Therapy and Cell Reprogramming For the Aging Brain: Achievements and Promise. Current Gene Therapy, 2014, 14, 24-34.	2.0	15
40	Changes in somatotropin and thyrotropin secretory patterns in aging rats. Neurobiology of Aging, 1990, 11, 625-630.	3.1	14
41	IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 459-467.	3.6	14
42	Relationship between pituitary hormones, antioxidant enzymes, and histopathological changes in the mammary gland of senescent rats. Experimental Gerontology, 1997, 32, 297-304.	2.8	13
43	Glucocorticoid-induced apoptosis in lymphoid organs is associated with a delayed increase in circulating deoxyribonucleic acid. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 171-177.	4.9	13
44	A Rat Treated with Mesenchymal Stem Cells Lives to 44 Months of Age. Rejuvenation Research, 2016, 19, 318-321.	1.8	13
45	Changes in circulating levels of neuroendocrine and thymic hormones during aging in rats: A correlation study. Experimental Gerontology, 1990, 25, 149-157.	2.8	12
46	Thymus and Aging: Potential of Gene Therapy for Restoration of Endocrine Thymic Function in Thymus-Deficient Animal Models. Gerontology, 2002, 48, 325-328.	2.8	12
47	Role of Programmed Cell Death in the Aging Process: An Unexplored Possibility. Gerontology, 1986, 32, 37-42.	2.8	11
48	Thymosin Peptides Stimulate Corticotropin Release by a Calcium-Dependent Mechanism. Neuroendocrinology, 1993, 57, 230-235.	2.5	11
49	Potential of Gene Therapy for the Treatment of Pituitary Tumors. Current Gene Therapy, 2004, 4, 79-87.	2.0	11
50	A Putative Mechanism of Age-Related Synaptic Dysfunction Based on the Impact of IGF-1 Receptor Signaling on Synaptic CaMKIIα Phosphorylation. Frontiers in Neuroanatomy, 2018, 12, 35.	1.7	11
51	Umbilical Cord Cell Therapy Improves Spatial Memory in Aging Rats. Stem Cell Reviews and Reports, 2019, 15, 612-617.	5.6	11
52	Physiology and Therapeutic Potential of the Thymic Peptide Thymulin. Current Pharmaceutical Design, 2014, 20, 4690-4696.	1.9	11
53	Partial Reprogramming As An Emerging Strategy for Safe Induced Cell Generation and Rejuvenation. Current Gene Therapy, 2019, 19, 248-254.	2.0	10
54	Impact of aging on the morphology and function of the somatotroph cell population in rats. Mechanisms of Ageing and Development, 1993, 70, 45-51.	4.6	9

#	Article	IF	CITATIONS
55	Histones and related preparations interfere with immunoassays for peptide hormones. Peptides, 1993, 14, 777-781.	2.4	9
56	Reduced ability of hypothalamic and pituitary extracts from old mice to stimulate thymulin secretion in vitro. Mechanisms of Ageing and Development, 1995, 83, 143-154.	4.6	9
57	Increased Number of Neurons in the Cervical Spinal Cord of Aged Female Rats. PLoS ONE, 2011, 6, e22537.	2.5	9
58	Racemized and Isomerized Proteins in Aging Rat Teeth and Eye Lens. Rejuvenation Research, 2016, 19, 309-317.	1.8	9
59	Aging and rejuvenation - a modular epigenome model. Aging, 2021, 13, 4734-4746.	3.1	9
60	In Vitro Studies on the Thymus-Pituitary Axis in Young and Old Rats. Annals of the New York Academy of Sciences, 1994, 741, 108-114.	3.8	9
61	Peripheral and mesencephalic transfer of a synthetic gene for the thymic peptide thymulin. Brain Research Bulletin, 2006, 69, 647-651.	3.0	8
62	Morphometric Assessment of the Impact of Serum Thymulin Immunoneutralization on Pituitary Cell Populations in Peripubertal Mice. Cells Tissues Organs, 2006, 184, 23-30.	2.3	8
63	Changes in carbohydrate expression in the cervical spinal cord of rats during aging. Neuropathology, 2009, 29, 258-262.	1.2	8
64	Effects of Post-Weaning Malnutrition on the Weight of the Head Components in Rats. Cells Tissues Organs, 1983, 115, 231-237.	2.3	7
65	Gene Therapy in the Neuroendocrine System: Its Implementation in Experimental Models Using Viral Vectors. Neuroendocrinology, 2001, 73, 75-83.	2.5	7
66	The Neuroendocrine System as a Model to Evaluate Experimental Gene Therapy. Current Gene Therapy, 2006, 6, 125-129.	2.0	7
67	Regulatable adenovector harboring the GFP and Yamanaka genes for implementing regenerative medicine in the brain. Gene Therapy, 2019, 26, 432-440.	4.5	7
68	Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas. Molecular Cancer, 2008, 7, 13.	19.2	6
69	Effect of Insulin-Like Growth Factor-I Gene Therapy on the Somatotropic Axis in Experimental Prolactinomas. Cells Tissues Organs, 2009, 190, 20-26.	2.3	6
70	Thymulin Gene Therapy Prevents the Histomorphometric Changes Induced by Thymulin Deficiency in the Thyrotrope Population of Mice. Cells Tissues Organs, 2011, 194, 67-75.	2.3	6
71	Thymulin-Based Gene Therapy and Pituitary Function in Animal Models of Aging. NeuroImmunoModulation, 2011, 18, 350-356.	1.8	6
72	Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behavioural Brain Research, 2019, 374, 111887.	2.2	6

#	Article	IF	CITATIONS
73	Thyrotropin-Releasing Activity of Histone H2A, H2B and Peptide MB35. Peptides, 1997, 18, 1315-1319.	2.4	5
74	Studies on the prolactin-releasing mechanism of histones H2A and H2B. Life Sciences, 2000, 66, 2081-2089.	4.3	5
75	Neuroendocrinology of Aging: The Potential of Gene Therapy as an Interventive Strategy. Gerontology, 2001, 47, 168-173.	2.8	5
76	Rejuvenating Effect of Long-Term Insulin-Like Growth Factor-I Gene Therapy in the Hypothalamus of Aged Rats with Dopaminergic Dysfunction. Rejuvenation Research, 2018, 21, 102-108.	1.8	5
77	A HIERARCHICAL MODEL FOR THE CONTROL OF EPIGENETIC AGING IN MAMMALS. Ageing Research Reviews, 2020, 62, 101134.	10.9	5
78	Half-life of plasma growth hormone in young and old conscious female rats. Experimental Gerontology, 1987, 22, 27-36.	2.8	4
79	Studies on in vivo gene transfer in pituitary tumors using herpes-derived and adenoviral vectors. Brain Research Bulletin, 2005, 65, 17-22.	3.0	4
80	Gene therapy for the treatment of pituitary tumors. Expert Review of Endocrinology and Metabolism, 2009, 4, 359-370.	2.4	4
81	Therapeutic potential of glial cell line-derived neurotrophic factor and cell reprogramming for hippocampal-related neurological disorders. Neural Regeneration Research, 2022, 17, 469.	3.0	4
82	Hypophysotropic activity of histone H3 in vitro. Peptides, 2003, 24, 671-678.	2.4	3
83	Partial prevention of hepatic lipid alterations in nude mice by neonatal thymulin gene therapy. Lipids, 2006, 41, 753-757.	1.7	3
84	Potential of Gene Therapy for Restoration of Endocrine Thymic Function in Thymus-Deficient Animal Models. Current Gene Therapy, 2008, 8, 49-53.	2.0	3
85	A regulatable adenovector system for GDNF and GFP delivery in the rat hippocampus. Neuropeptides, 2020, 83, 102072.	2.2	3
86	Cryopreservation of a Human Brain and Its Experimental Correlate in Rats. Rejuvenation Research, 2020, 23, 516-525.	1.8	3
87	Age changes in the activity of liver 3-hydroxy-3-methylglutaryl–CoA reductase in female rats: influence of mammary pathology. Mechanisms of Ageing and Development, 1998, 100, 41-51.	4.6	2
88	Changes in chromatin composition associated with hormone-dependent mammary tumor regression. International Journal of Cancer, 1983, 31, 281-284.	5.1	1
89	Degradation of immunoreactive albumin in young and old conscious female rats. Mechanisms of Ageing and Development, 1986, 37, 69-78.	4.6	1
90	Age-dependent prolactin-releasing activity of nucleoproteins. Mechanisms of Ageing and Development, 1996, 89, 103-111.	4.6	1

#	Article	IF	CITATIONS
91	Morphological Changes Induced by Insulin-Like Growth Factor-I Gene Therapy in Pituitary Cell Populations in Experimental Prolactinomas. Cells Tissues Organs, 2010, 191, 316-325.	2.3	1
92	Role of thymulin on the somatotropic axis in vivo. Life Sciences, 2012, 91, 166-171.	4.3	1
93	The Thymulin-Lactotropic Axis in Rodents: Thymectomy, Immunoneutralization and Gene Transfer Studies. NeuroImmunoModulation, 2013, 20, 256-263.	1.8	1
94	A new adenovector system for implementing thymulin gene therapy for inflammatory disorders. Molecular Immunology, 2017, 87, 180-187.	2.2	1
95	IGF-1 Gene Therapy as a Potentially Useful Therapy for Spontaneous Prolactinomas in Senile Rats. Current Gene Therapy, 2018, 18, 240-245.	2.0	1
96	Protective effect of estrogens on the brain of rats with essential and endocrine hypertension. Hormone Molecular Biology and Clinical Investigation, 2010, 4, 549-57.	0.7	0